ONE-DIMENSIONAL STRING THEORY ON A CIRCLE

被引:183
作者
GROSS, DJ
KLEBANOV, I
机构
[1] Joseph Henry Laboratories, Princeton University, Princeton
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90667-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss random matrix-model representations of D = 1 string theory, with particular emphasis on the case in which the target space is a circle of finite radius. The duality properties of discretized strings are analyzed and shown to depend on the dynamics of vortices. In the representation in terms of a continuous circle of matrices we find an exact expression for the free energy, neglecting non-singlet states, as a function of the string coupling and the radius which exhibits exact duality. In a second version, based on a discrete chain of matrices, we find that vortices induce, for a finite radius, a Kosterlitz-Thouless phase transition that takes us to a c = 0 theory. © 1990.
引用
收藏
页码:475 / 498
页数:24
相关论文
共 34 条
[1]   DUALITY IS AN EXACT SYMMETRY OF STRING PERTURBATION-THEORY [J].
ALVAREZ, E ;
OSORIO, MAR .
PHYSICAL REVIEW D, 1989, 40 (04) :1150-1152
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]  
AMBJORN J, NBIHE9017 NIELS BOHR
[4]   THE HAGEDORN TRANSITION AND THE NUMBER OF DEGREES OF FREEDOM OF STRING THEORY [J].
ATICK, JJ ;
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 310 (02) :291-334
[5]  
BEREZINSKII VL, 1972, ZH EKSP TEOR FIZ, V34, P610
[6]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[7]  
BREZIN E, COMMUNICATION
[8]  
BREZIN E, 1989, RU8947 RUTG PREPR
[9]  
BREZIN E, LPSENS89182 EC NORM
[10]  
BREZIN E, 1989, ECOLE NORMALE PREPRI