BRANCH-AND-BOUND METHOD FOR REVERSED GEOMETRIC-PROGRAMMING

被引:26
作者
GOCHET, W
SMEERS, Y
机构
关键词
D O I
10.1287/opre.27.5.982
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
A general or signomial geometric program is a nonlinear mathematical program involving general polynomials in several variables both in the objective function and the constraints. A branch-and-bound method is proposed for this extensive class of nonconvex optimization programs guaranteeing convergence to the global optimum. The subproblems to be solved are convex but the method can easily be combined with a cutting plane technique to generate subproblems which are linear. A simple example is given to illustrate the technique.
引用
收藏
页码:982 / 996
页数:15
相关论文
共 50 条
[21]   Branch-and-Bound for Bi-objective Integer Programming [J].
Parragh, Sophie N. ;
Tricoire, Fabien .
INFORMS JOURNAL ON COMPUTING, 2019, 31 (04) :805-822
[22]   A Branch-and-Bound Algorithm Embedded with DCA for DC Programming [J].
Wang, Meihua ;
Xu, Fengmin ;
Xu, Chengxian .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[23]   A Novel TRUST-TECH Guided Branch-and-Bound Method for Nonlinear Integer Programming [J].
Chiang, Hsiao-Dong ;
Wang, Tao .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2015, 45 (10) :1361-1372
[24]   Geometric branch-and-bound methods for constrained global optimization problems [J].
Daniel Scholz .
Journal of Global Optimization, 2013, 57 :771-782
[25]   The theoretical and empirical rate of convergence for geometric branch-and-bound methods [J].
Schoebel, Anita ;
Scholz, Daniel .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 48 (03) :473-495
[26]   The theoretical and empirical rate of convergence for geometric branch-and-bound methods [J].
Anita Schöbel ;
Daniel Scholz .
Journal of Global Optimization, 2010, 48 :473-495
[27]   A geometric branch-and-bound algorithm for the service bundle design problem [J].
Li, Yifu ;
Qi, Xiangtong .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 303 (03) :1044-1056
[28]   Deterministic Global Optimization: Geometric Branch-and-Bound Methods and Their Applications [J].
Zilinskas, Antanas .
INTERFACES, 2013, 43 (01) :105-106
[29]   Geometric branch-and-bound methods for constrained global optimization problems [J].
Scholz, Daniel .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (03) :771-782
[30]   An extended branch-and-bound method for locomotive assignment [J].
Rouillon, S ;
Desaulniers, G ;
Soumis, F .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2006, 40 (05) :404-423