CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS

被引:337
作者
Chen, Gong [1 ]
Teboulle, Marc [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21228 USA
基金
美国国家科学基金会;
关键词
Bregman functions; proximal methods; convex programming;
D O I
10.1137/0803026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alternative convergence proof of a proximal-like minimization algorithm using Bregman functions, recently proposed by Censor and Zenios, is presented. The analysis allows the establishment of a global convergence rate of the algorithm expressed in terms of function values.
引用
收藏
页码:538 / 543
页数:6
相关论文
共 17 条