CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS

被引:346
作者
Chen, Gong [1 ]
Teboulle, Marc [1 ]
机构
[1] Univ Maryland, Dept Math & Stat, Baltimore, MD 21228 USA
基金
美国国家科学基金会;
关键词
Bregman functions; proximal methods; convex programming;
D O I
10.1137/0803026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alternative convergence proof of a proximal-like minimization algorithm using Bregman functions, recently proposed by Censor and Zenios, is presented. The analysis allows the establishment of a global convergence rate of the algorithm expressed in terms of function values.
引用
收藏
页码:538 / 543
页数:6
相关论文
共 17 条
[1]  
Bertsekas DP, 1981, CONSTRAINED OPTIMIZA
[2]  
Bregman L M, 1967, USSR COMP MATH MATH, V7, P200, DOI DOI 10.1016/0041-5553(67)90040-7
[3]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[4]   PROXIMAL MINIMIZATION ALGORITHM WITH D-FUNCTIONS [J].
CENSOR, Y ;
ZENIOS, SA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 73 (03) :451-464
[5]   AN ITERATIVE ROW-ACTION METHOD FOR INTERVAL CONVEX-PROGRAMMING [J].
CENSOR, Y ;
LENT, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 34 (03) :321-353
[6]  
DEPIERRO A., 1986, J OPTIM THEORY APPL, V5, P421
[7]  
ECKSTEIN J., MATH OPER R IN PRESS
[8]   MULTIPLICATIVE ITERATIVE ALGORITHMS FOR CONVEX-PROGRAMMING [J].
EGGERMONT, PPB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 130 :25-42
[9]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[10]  
Lemaire B., 1989, INT SERIES NUMERICAL, V87, P73