OBSERVATION OF INDUCED SUBCRITICAL BIFURCATION BY NEAR-RESONANT PERTURBATIONS

被引:32
作者
VOHRA, ST [1 ]
FABINY, L [1 ]
WIESENFELD, K [1 ]
机构
[1] GEORGIA INST TECHNOL,DEPT PHYS,ATLANTA,GA 30332
关键词
D O I
10.1103/PhysRevLett.72.1333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first experimental evidence that near-resonant perturbations produce a destabilizing shift of a subcritical bifurcation. This is in direct contrast to supercritical bifurcations, where near-resonant perturbations always suppress the instability. Using a normal form analysis we derive a generic scaling law relating the magnitude of the destabilizing shift mu to the perturbation amplitude epsilon and detuning frequency delta. The predictions are in excellent agreement with our experiments. In the limit of very small delta the shift obeys a pure scaling law, mu is-proportional-to (epsilon)2/3.
引用
收藏
页码:1333 / 1336
页数:4
相关论文
共 18 条
[1]  
Andrienko A. V., 1988, Soviet Physics - JETP, V67, P141
[2]   PHASE-SENSITIVE AMPLIFICATION AND DEAMPLIFICATION OF NOISE AND THE NOISE RISE IN PERIOD-DOUBLING SYSTEMS NEAR A BIFURCATION [J].
BOCKO, MF ;
BATTIATO, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1763-1766
[3]   SUPPRESSION OF PERIOD-DOUBLING AND NONLINEAR PARAMETRIC EFFECTS IN PERIODICALLY PERTURBED SYSTEMS [J].
BRYANT, P ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1986, 33 (04) :2525-2543
[4]   NOISE RISE IN NONDEGENERATE PARAMETRIC-AMPLIFIERS [J].
BRYANT, PH ;
MOVSHOVICH, R ;
YURKE, B .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2641-2644
[5]  
BUCHOLTZ F, FIBER OPTIC SENSORS, pCH12
[6]   PERIOD-DOUBLING LASERS AS SMALL-SIGNAL DETECTORS [J].
DERIGHETTI, B ;
RAVANI, M ;
STOOP, R ;
MEIER, PF ;
BRUN, E ;
BADII, R .
PHYSICAL REVIEW LETTERS, 1985, 55 (17) :1746-1748
[7]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214
[8]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[9]   OBSERVATION OF NOISY PRECURSORS OF DYNAMICAL INSTABILITIES [J].
JEFFRIES, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1985, 31 (02) :1077-1084
[10]  
JORDAN D.W., 1977, NONLINEAR ORDINARY D