Effect of Mechanical Activation on Ti3AlC2 Max Phase Formation under Self-Propagating High-Temperature Synthesis

被引:17
作者
Potanin, A. Yu. [1 ]
Loginov, P. A. [1 ]
Levashov, E. A. [1 ]
Pogozhev, Yu. S. [1 ]
Patsera, E. I. [1 ]
Kochetov, N. A. [2 ]
机构
[1] Natl Univ Sci & Technol MISIS, SHS Res & Educ Ctr MISIS ISMAN, Leninsky Prospect 4, Moscow 119049, Russia
[2] Russian Acad Sci, Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
SHS; mechanical activation; mechanosynthesis; Ti3AlC2; combustion rate;
D O I
10.18321/ectj249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we have investigated the effect of various mechanical activation (MA) modes on phase and structure formation in powder mixtures made up to produce Ti3AlC2 MAX phase. The optimal MA duration has been established which results in the maximum heat release under SHS due to accumulation of structural defects leading to the growth of internal energy. The effect of MA on the character and kinetics of combustion front propagation has been investigated. It was shown that following pretreatment of a powder mixture in a planetary ball mill, the combustion mode changes from stationary to a pulsating combustion and, consequently, the combustion rate decreases. The burning-out of the sample is partial and with interruptions (depressions). Force SHS-pressing technology was used for obtaining of compacted samples with homogeneous structure based on Ti3AlC2.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
[41]   Hedvall Effect in Self-Propagating High-Temperature Synthesis in Mechanically Activated Compositions [J].
Korchagin, M. A. ;
Gavrilov, A., I ;
Dudina, D., V ;
Bokhonov, B. B. ;
Bulina, N., V .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2021, 57 (06) :640-650
[42]   Ultrafine Si/Al2O3 composites obtained by combining methods of mechanical activation and self-propagating high-temperature synthesis [J].
Grigorieva, T. F. ;
Talako, T. L. ;
Sharafutdinov, M. R. ;
Kaminskii, Yu. D. ;
Vorsina, I. A. ;
Tsibulya, S. V. ;
Barinova, A. P. ;
Lyakhov, N. Z. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2010, 46 (01) :36-40
[43]   Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique [J].
Khanra, AK ;
Pathak, LC ;
Mishra, SK ;
Godkhindi, MM .
MATERIALS LETTERS, 2004, 58 (05) :733-738
[44]   Self-propagating high-temperature synthesis brazing for emergency repair [J].
Bai Yang ;
Luo Zhen ;
Fan Naifeng ;
Ao Sansan .
FOURTH INTERNATIONAL SEMINAR ON MODERN CUTTING AND MEASUREMENT ENGINEERING, 2011, 7997
[45]   Self-propagating high-temperature synthesis of lanthanide orthochromites LnCrO3 [J].
Kuznetsov, MV ;
Parkin, IP .
EUROPEAN POWDER DIFFRACTION, PTS 1 AND 2, 2000, 321-3 :779-784
[46]   Granulation in the powder technology of self-propagating high-temperature synthesis [J].
Amosov, A. P. ;
Makarenko, A. G. ;
Samboruk, A. R. ;
Seplyarskii, B. S. ;
Samboruk, A. A. ;
Gerasimov, I. O. ;
Orlov, A. V. ;
Yatsenko, V. V. .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2013, 54 (03) :267-273
[47]   Preparation of ZrC powder by Self-propagating High-temperature Synthesis [J].
Li, Jing ;
Fu, Zhengyi ;
Zhang, Jinyong ;
Wang, Hao ;
Wang, Weimin ;
Wang, Yucheng ;
Cheng, Yibing .
ADVANCED SYNTHESIS AND PROCESSING TECHNOLOGY FOR MATERIALS, 2009, 66 :258-+
[48]   Ignition time of self-propagating high-temperature synthesis by laser [J].
陈森昌 ;
迟彦惠 ;
史玉升 ;
黄树槐 .
Transactions of Nonferrous Metals Society of China, 2002, (01) :49-53
[49]   Self-Propagating High-Temperature Synthesis for Disposal of Radioactive Waste [J].
T. V. Barinova ;
M. I. Alymov .
International Journal of Self-Propagating High-Temperature Synthesis, 2022, 31 :179-187
[50]   Granulation in the powder technology of self-propagating high-temperature synthesis [J].
A. P. Amosov ;
A. G. Makarenko ;
A. R. Samboruk ;
B. S. Seplyarskii ;
A. A. Samboruk ;
I. O. Gerasimov ;
A. V. Orlov ;
V. V. Yatsenko .
Russian Journal of Non-Ferrous Metals, 2013, 54 :267-273