Effect of Mechanical Activation on Ti3AlC2 Max Phase Formation under Self-Propagating High-Temperature Synthesis

被引:17
作者
Potanin, A. Yu. [1 ]
Loginov, P. A. [1 ]
Levashov, E. A. [1 ]
Pogozhev, Yu. S. [1 ]
Patsera, E. I. [1 ]
Kochetov, N. A. [2 ]
机构
[1] Natl Univ Sci & Technol MISIS, SHS Res & Educ Ctr MISIS ISMAN, Leninsky Prospect 4, Moscow 119049, Russia
[2] Russian Acad Sci, Inst Struct Macrokinet & Mat Sci, Chernogolovka 142432, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
SHS; mechanical activation; mechanosynthesis; Ti3AlC2; combustion rate;
D O I
10.18321/ectj249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we have investigated the effect of various mechanical activation (MA) modes on phase and structure formation in powder mixtures made up to produce Ti3AlC2 MAX phase. The optimal MA duration has been established which results in the maximum heat release under SHS due to accumulation of structural defects leading to the growth of internal energy. The effect of MA on the character and kinetics of combustion front propagation has been investigated. It was shown that following pretreatment of a powder mixture in a planetary ball mill, the combustion mode changes from stationary to a pulsating combustion and, consequently, the combustion rate decreases. The burning-out of the sample is partial and with interruptions (depressions). Force SHS-pressing technology was used for obtaining of compacted samples with homogeneous structure based on Ti3AlC2.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
[21]   Producing Cu/ZrO2 Composites by Combining Mechanical Activation and Self-Propagating High-Temperature Synthesis [J].
Grigor'eva, T. F. ;
Letsko, A. I. ;
Talako, T. L. ;
Tsybulya, S. V. ;
Vorsina, I. A. ;
Barinova, A. P. ;
Il'yushchenko, A. F. ;
Lyakhov, N. Z. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2011, 47 (02) :174-178
[22]   Producing Cu/ZrO2 composites by combining mechanical activation and self-propagating high-temperature synthesis [J].
T. F. Grigor’eva ;
A. I. Letsko ;
T. L. Talako ;
S. V. Tsybulya ;
I. A. Vorsina ;
A. P. Barinova ;
A. F. Il’yushchenko ;
N. Z. Lyakhov .
Combustion, Explosion, and Shock Waves, 2011, 47
[23]   Structure and phase formation of combustion products during the synthesis of γ-AlON in self-propagating high-temperature synthesis [J].
Borovinskaya, I. P. ;
Akopdzhanyan, T. G. ;
Ignatieva, T. I. ;
Chemagina, E. A. .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2017, 58 (04) :405-410
[24]   Self-propagating high-temperature synthesis in Ti-W-C system [J].
Li, JF ;
Zhang, Z ;
Xu, XW ;
Zheng, ZQ .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2001, 11 (05) :733-737
[25]   Self-Propagating High-Temperature Synthesis of Mechanically Activated Mixtures in Co-Ti-Al [J].
Vadchenko, S. G. ;
Busurina, M. L. ;
Suvorova, E. V. ;
Mukhina, N. I. ;
Kovalev, I. D. ;
Sychev, A. E. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2021, 57 (01) :53-59
[26]   Some aspects in self-propagating high-temperature synthesis [J].
Mossino, P .
CERAMICS INTERNATIONAL, 2004, 30 (03) :311-332
[27]   Self-propagating high-temperature synthesis in mechanoactivated compositions [J].
Korchagin M.A. ;
Lyakhov N.Z. .
Russian Journal of Physical Chemistry B, Focus on Physics, 2008, 2 (1) :77-82
[28]   Self-propagating high-temperature synthesis of ferrosilicon nitride [J].
Ziatdinov M.Kh. ;
Shatokhin I.M. .
Steel Transl., 2008, 1 (39-44) :39-44
[29]   Application of titanium to self-propagating high-temperature synthesis [J].
I. P. Borovinskaya ;
V. K. Prokudina ;
V. I. Ratnikov .
Russian Journal of Non-Ferrous Metals, 2012, 53 :330-337
[30]   Application of titanium to self-propagating high-temperature synthesis [J].
Borovinskaya, I. P. ;
Prokudina, V. K. ;
Ratnikov, V. I. .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2012, 53 (04) :330-337