Flow and Heat Transfer in the Space Between Two Corotating Disks in an Axisymmetric Enclosure

被引:24
作者
Chang, C. J. [1 ]
Schuler, C. A. [1 ]
Humphrey, J. A. C. [1 ]
Greif, R. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 1989年 / 111卷 / 1-4期
关键词
Enclosure Flows; Forced Convection; Numerical Methods;
D O I
10.1115/1.3250728
中图分类号
O414.1 [热力学];
学科分类号
摘要
A numerical investigation was undertaken to characterize the laminar flow and heat transfer in axisymmetric coaxial corotating shrouded disk configurations. Attention was focused on calculation conditions favoring steady, stable, symmetric solutions of the conservation equations. The justification for this is based on velocity measurements obtained in a test section that matches the numerical configuration. Calculations were performed to investigate the dependence of the flow characteristics on disk angular velocity, disk spacing, and the disk-shroud gap width. Conditions involving a radial throughflow (blowing) and/or an axially directed disk-shroud gap flow were also predicted. In the region of the shroud the results show a strong sensitivity of the flow and heat transfer to variations in the flow Reynolds number (rotation) and Rossby number (blowing). By contrast, the flow was found to be less dependent on the disk spacing and the disk-shroud gap width for the conditions investigated. The introduction of an axially directed disk-shroud gap flow significantly alters the flow and heat transfer characteristics in the region between two disks. This finding is important for the improved design and control of corotating disk systems.
引用
收藏
页码:625 / 632
页数:8
相关论文
empty
未找到相关数据