SCHAUDER ESTIMATES FOR BOUNDARY-LAYER POTENTIALS

被引:7
作者
WIEGNER, M
机构
[1] Fakultät für Mathematik und Physik, Universität Bayreuth, Bayreuth
关键词
D O I
10.1002/mma.1670161204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundary layer potentials with Holder-continuous densities are widely used for representing solutions of boundary value problems for certain partial differential equations. These potentials are of the type upsilon(x)=integral(partial derivative G)(x-xi)rho\x-xi\-\rho\-n+1lambda(xi)domega(xi) on R(n)\partial derivative G, with \rho\ odd and a density lambda of class C(k+alpha). This paper presents a self-contained exposition of the fact that the potential upsilon may be continued as C(k+alpha)-functions onto GBAR and R(n)\GBAR respectively (together with estimates for the Holder-norms) under the least possible regularity assumption for the boundary partial derivative G: it has to be of class C(k+1+alpha).
引用
收藏
页码:877 / 894
页数:18
相关论文
共 17 条
[1]   THE RESOLVENT PROBLEM FOR THE STOKES SYSTEM IN EXTERIOR DOMAINS - AN ELEMENTARY APPROACH [J].
DEURING, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (04) :335-349
[2]   AN INTEGRAL OPERATOR RELATED TO THE STOKES SYSTEM IN EXTERIOR DOMAINS [J].
DEURING, P .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 13 (04) :323-333
[3]   SCHAUDER ESTIMATES FOR THE SINGLE LAYER POTENTIAL IN HYDRODYNAMICS [J].
DEURING, P ;
VARNHORN, W .
MATHEMATISCHE NACHRICHTEN, 1992, 157 :277-289
[4]  
Deuring P., 1988, BAYREUTHER MATH SCHR, V27, P1
[5]  
DEURING P, 1989, BAYREUTHER MATH SCHR, V28, P1
[6]  
GMEINER A, 1992, THESIS BAYREUTH
[7]  
Gunther N.M, 1957, POTENTIALTHEORIE IHR
[8]  
HEBEKER FK, 1984, Z ANGEW MATH MECH, V64, pT363
[9]  
Heinemann U., 1992, THESIS BAYREUTH
[10]  
Kamynin L. I., 1968, DIFFER EQUAT, V4, P185