ON INTERIOR ALGORITHMS FOR LINEAR-PROGRAMMING WITH NO REGULARITY ASSUMPTIONS

被引:6
作者
ANSTREICHER, KM
机构
[1] Department of Management Sciences, University of Iowa, Iowa City, IA
关键词
LINEAR PROGRAMMING; INTERIOR ALGORITHM; PHASE-I; PHASE-II; ARTIFICIAL VARIABLE;
D O I
10.1016/0167-6377(92)90026-Y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The linear programming algorithm of Karmarkar (1984), and all interior methods subsequently devised, require a regularity assumption that the primal and/or dual problem possess a nonempty interior. In this note we devise a polynomial-time interior algorithm which will directly 'process' and linear program, with no regularity assumptions whatsoever, without the addition of any 'M' terms. Our method is based on the application of a combined phase I-phase II algorithm to a combined primal-dual problem.
引用
收藏
页码:209 / 212
页数:4
相关论文
共 16 条
[1]   A COMBINED PHASE-I PHASE-II PROJECTIVE ALGORITHM FOR LINEAR-PROGRAMMING [J].
ANSTREICHER, KM .
MATHEMATICAL PROGRAMMING, 1989, 43 (02) :209-223
[2]  
ANSTREICHER KM, 1990, CORE8939 CATH U LOUV
[3]   A Polynomial Newton Method for Linear Programming [J].
de Ghellinck, Guy ;
Vial, Jean-Philippe .
ALGORITHMICA, 1986, 1 (1-4) :425-453
[4]   A RELAXED VERSION OF KARMARKAR METHOD [J].
GOLDFARB, D ;
MEHROTRA, S .
MATHEMATICAL PROGRAMMING, 1988, 40 (03) :289-315
[5]  
GONZAGA CC, 1991, IN PRESS SIAM REV
[6]  
GULER O, 1991, 914 U IOW COLL BUS A
[7]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[8]  
Schrijver A., 1998, WILEY INTERSCIENCE S
[9]  
TODD MJ, 1989, ORIE776 CORN U SCH T
[10]  
TODD MJ, 1989, ORIE877 CORN U TECHN