TWISTORS AND G-STRUCTURES

被引:4
作者
ALEKSEEVSKII, DV
GRAEV, MM
机构
[1] Center Sophus Lie, Institute of Systems Studies
来源
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS | 1993年 / 40卷 / 01期
关键词
D O I
10.1070/IM1993v040n01ABEH001851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors distinguish a class of twistor spaces Z = P X (G)S that are associated, following Berard-Bergery and Ochiai, with G-structures P on even-dimensional manifolds and connections in P. It is assumed that S = G/H is a complex totally geodesic submanifold of the affine symmetric space GL2n(R)/GL(n)(C) . This class includes all the basic examples of twistor spaces fibered over an even-dimensional base. The integrability of the canonical almost complex structure J(Z) and the holomorphy of the canonical distribution H(Z) in Z are studied in terms of some natural H-structure with a connection on the manifold Z. Some examples are also treated.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 20 条
[1]  
ALEKSEEVSKII DV, 1988, DOKL AKAD NAUK SSSR, V299, P521
[2]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[3]  
BERARDBERGERY L, 1984, SOME GENERALIZATIONS, P52
[4]  
BESSE AL, 1987, EINSTEIN MANIFOLDS
[5]   LIE-GROUPS AND TWISTOR SPACES [J].
BRYANT, RL .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (01) :223-261
[6]  
BURSTALL FE, 1990, LECTURE NOTES MATH, V1424
[7]  
EELLS J, 1983, CR ACAD SCI I-MATH, V296, P685
[8]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[9]  
KOBAYASHI S, 1966, J MATH MECH, V15, P315
[10]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2