THE ARTIN-HASSE POWER-SERIES AND PARA-ADIC GROUP-RINGS

被引:0
作者
HOECHSMANN, K
RITTER, J
机构
[1] UNIV BRITISH COLUMBIA,DEPT MATH,VANCOUVER V6T 1Y4,BC,CANADA
[2] UNIV AUGSBURG,INST MATH,W-8900 AUGSBURG,GERMANY
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0022-314X(91)90039-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If p is an odd prime and A an abelian p-group, consider the multiplicative group formed by {1 + ∑z ∈ A az(z - 2 + z-1) | az ∈ Zp} in the p-adic group ring. This group is shown to be a Zp-module with the basis {E(z - 2 + z-1) | 1 ≠ z ∈ A}, where E(T) denotes the well-known p-adically integral power series exp(Σn ≥ 0 p-nTp). © 1991.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 6 条
  • [1] ARTIN E, 1928, HAMBURFER ABH, V6, P142
  • [2] GENERALIZATION OF A KUMMER LEMMA
    HOECHSMANN, K
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (04): : 486 - 489
  • [3] HOECHSMANN K, IN PRESS J PURE APPL
  • [4] HOECHSMANN K, 1987, ARCH MATH, V49
  • [5] LANG S, 1982, CYCLOTOMIC FIELDS, V2
  • [6] Sehgal S.K., 1978, TOPICS GROUP RINGS