Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating

被引:73
作者
Das, S. [1 ]
Banu, A. S. [1 ]
Jana, R. N. [2 ]
Makinde, O. D. [3 ]
机构
[1] Univ Gour Banga, Dept Math, Malda 732103, India
[2] Vidyasagar Univ, Dept Appl Math, Midnapore 721102, India
[3] Univ Stellenbosch, Fac Mil Sci, ZA-7395 Saldanha, South Africa
关键词
MHD; Pseudo-plastic nanofluid; Entropy generation; Bejan number; Convective heating;
D O I
10.1016/j.aej.2015.05.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is concerned with the entropy generation in a magnetohydrodynamic (MHD) pseudo-plastic nanofluid flow through a porous channel with convective heating. Three different types of nanoparticles, namely copper, aluminum oxide and titanium dioxide are considered with pseudo-plastic carboxymethyl cellulose (CMC)-water used as base fluids. The governing equations are solved numerically by shooting technique coupled with Runge-Kutta scheme. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation, Bejan number as well as the shear stresses at the channel walls are presented graphically and analyzed in detail. It is possible to determine optimum values of magnetic parameter, power-law index, Eckert number and Boit number which lead to a minimum entropy generation rate. (c) 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 55 条