NOTE ON THE RANDIC ENERGY OF GRAPHS

被引:0
作者
He, Jun [1 ]
Liu, Yan-Min [1 ]
Tian, Jun-Kang [1 ]
机构
[1] Zunyi Normal Coll, Sch Math, Zunyi 563002, Guizhou, Peoples R China
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2018年 / 42卷 / 02期
关键词
Randic energy; Randic matrix; bounds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a graph on n vertices, and d(i) is the degree of its i-th vertex, then the Randic matrix of G is the square matrix of order n whose (i, j)-entry is equal to 1/root d(i)d(j) if the i-th and j-th vertex of G are adjacent, and zero otherwise. In this note, we obtain some new lower and upper bounds for the Randic energy.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 13 条
  • [1] Bozkurt SB, 2012, EUR J PURE APPL MATH, V5, P88
  • [2] Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P321
  • [3] Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
  • [4] Bozkurt SB, 2013, MATCH-COMMUN MATH CO, V70, P669
  • [5] BOUNDS FOR TOTAL PI-ELECTRON ENERGY
    GUTMAN, I
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 24 (02) : 283 - 285
  • [6] On Randic energy
    Gutman, Ivan
    Furtula, Boris
    Bozkurt, S. Burcu
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 : 50 - 57
  • [7] Improving the McClelland inequality for total π-electron energy
    Koolen, JH
    Moulton, V
    Gutman, I
    [J]. CHEMICAL PHYSICS LETTERS, 2000, 320 (3-4) : 213 - 216
  • [8] Maximal energy graphs
    Koolen, JH
    Moulton, V
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (01) : 47 - 52
  • [9] Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
  • [10] Liu BL, 2012, MATCH-COMMUN MATH CO, V68, P913