ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE

被引:85
作者
AIZICOVICI, S
PAVEL, NH
机构
[1] Department of Mathematics, Ohio University, Athens
关键词
D O I
10.1016/0022-1236(91)90046-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A broad class of nonlinear, non-monotone anti-periodic boundary value problems in a Hilbert space is considered. As a preliminary step, the existence, uniqueness and continuous dependence upon data of anti-periodic solutions to some first- and second-order evolution equations associated to odd, noncoercive monotone operators is established. Applications of the theory to nonlinear partial differential equations are also discussed. © 1991.
引用
收藏
页码:387 / 408
页数:22
相关论文
共 11 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
Aftabizadeh AR., 1989, DIFFER INTEGRAL EQU, V2, P495
[3]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
[4]  
Brezis H., 1973, MATH STUDIES, V5
[5]   ANTI-PERIODIC SOLUTIONS OF SOME NONLINEAR EVOLUTION-EQUATIONS [J].
HARAUX, A .
MANUSCRIPTA MATHEMATICA, 1989, 63 (04) :479-505
[6]  
HARAUX A, 1981, LECTURE NOTES MATH, V841
[7]  
Haraux A., 1978, ANN I FOURIER, V28, P201
[8]  
Ladyzhenskaya O. A., 1968, TRANSL MATH MONOGRAP, V23
[10]   NONMONOTONE PERTURBATIONS FOR NONLINEAR PARABOLIC EQUATIONS ASSOCIATED WITH SUBDIFFERENTIAL OPERATORS, PERIODIC PROBLEMS [J].
OTANI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (02) :248-273