Test-Retest Data for Radiomics Feature Stability Analysis: Generalizable or Study-Specific?

被引:142
作者
van Timmeren, Janna E. [1 ]
Leijenaar, Ralph T. H. [1 ]
van Elmpt, Wouter [1 ]
Wang, Jiazhou [2 ,3 ]
Zhang, Zhen [2 ,3 ]
Dekker, Andre [1 ]
Lambin, Philippe [1 ]
机构
[1] MUMC, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[2] Fudan Univ, Shanghai Canc Ctr, Dept Radiat Oncol, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China
关键词
radiomics; test-retest; computed tomography;
D O I
10.18383/j.tom.2016.00208
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics is an objective method for extracting quantitative information from medical images. However, in radiomics, standardization, overfitting, and generalization are major challenges to be overcome. Test-retest experiments can be used to select robust radiomic features that have minimal variation. Currently, it is unknown whether they should be identified for each disease (disease specific) or are only imaging device-specific (computed tomography [CT]-specific). Here, we performed a test-retest analysis on CT scans of 40 patients with rectal cancer in a clinical setting. Correlation between radiomic features was assessed using the concordance correlation coefficient (CCC). In total, only 9/542 features have a CCC > 0.85. Furthermore, results were compared with the test-retest results on CT scans of 27 patients with lung cancer with a 15-minute interval. Results show that 446/542 features have a higher CCC for the test-retest analysis of the data set of patients with lung cancer than for patients with rectal cancer. The importance of controlling factors such as scanners, imaging protocol, reconstruction methods, and time points in a radiomics analysis is shown. Moreover, the results imply that test-retest analyses should be performed before each radiomics study. More research is required to independently evaluate the effect of each factor.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 22 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change-analysis software
    Armato, S. G., III
    Meyer, C. R.
    McNitt-Gray, M. F.
    McLennan, G.
    Reeves, A. P.
    Croft, B. Y.
    Clarke, L. P.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (04) : 448 - 456
  • [3] Test-Retest Reproducibility Analysis of Lung CT Image Features
    Balagurunathan, Yoganand
    Kumar, Virendra
    Gu, Yuhua
    Kim, Jongphil
    Wang, Hua
    Liu, Ying
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Korn, Rene
    Zhao, Binsheng
    Schwartz, Lawrence H.
    Basu, Satrajit
    Eschrich, Steven
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) : 805 - 823
  • [4] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87
  • [5] Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer
    Fried, David V.
    Tucker, Susan L.
    Zhou, Shouhao
    Liao, Zhongxing
    Mawlawi, Osama
    Ibbott, Geoffrey
    Court, Laurence E.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 (04): : 834 - 842
  • [6] Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters
    Galavis, Paulina E.
    Hollensen, Christian
    Jallow, Ngoneh
    Paliwal, Bhudatt
    Jeraj, Robert
    [J]. ACTA ONCOLOGICA, 2010, 49 (07) : 1012 - 1016
  • [7] Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer
    Huang, Yan-qi
    Liang, Chang-hong
    He, Lan
    Tian, Jie
    Liang, Cui-shan
    Chen, Xin
    Ma, Ze-lan
    Liu, Zai-yi
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (18) : 2157 - +
  • [8] Radiomics: the process and the challenges
    Kumar, Virendra
    Gu, Yuhua
    Basu, Satrajit
    Berglund, Anders
    Eschrich, Steven A.
    Schabath, Matthew B.
    Forster, Kenneth
    Aerts, Hugo J. W. L.
    Dekker, Andre
    Fenstermacher, David
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Lambin, Philippe
    Balagurunathan, Yoganand
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. MAGNETIC RESONANCE IMAGING, 2012, 30 (09) : 1234 - 1248
  • [9] Predicting outcomes in radiation oncology-multifactorial decision support systems
    Lambin, Philippe
    van Stiphout, Ruud G. P. M.
    Starmans, Maud H. W.
    Rios-Velazquez, Emmanuel
    Nalbantov, Georgi
    Aerts, Hugo J. W. L.
    Roelofs, Erik
    van Elmpt, Wouter
    Boutros, Paul C.
    Granone, Pierluigi
    Valentini, Vincenzo
    Begg, Adrian C.
    De Ruysscher, Dirk
    Dekker, Andre
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2013, 10 (01) : 27 - 40
  • [10] Radiomics: Extracting more information from medical images using advanced feature analysis
    Lambin, Philippe
    Rios-Velazquez, Emmanuel
    Leijenaar, Ralph
    Carvalho, Sara
    van Stiphout, Ruud G. P. M.
    Granton, Patrick
    Zegers, Catharina M. L.
    Gillies, Robert
    Boellard, Ronald
    Dekker, Andre
    Aerts, Hugo J. W. L.
    [J]. EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) : 441 - 446