The recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G (IgG), has been investigated with the use of two-dimensional proton nuclear magnetic resonance spectroscopy. All backbone and side-chain proton resonances of FB (60 amino acid residues), except the amide proton resonance of Ala2, were assigned by the sequential assignment procedures by using double-quantum-filtered correlated spectroscopy (DQF-COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), and nuclear Overhauser enhancement spectroscopy (NOESY). On the basis of the NOESY data, three helical regions, Glu9-His19, Glu25-Asp37, and Ser42-Ala55, were identified in the free FB in solution. Existence of two of the three helical regions, Glu9-His19 and Glu25-Asp37, is consistent with the X-ray crystallographic structure of the Fc-bound FB [Deisenhofer, J. (1981) Biochemistry 20, 2361-2370]. By contrast, in the Fc-bound FB as revealed by the X-ray analysis, the Ser42-Glu48 segment is extended and no structural information has been available in the Ala49-Ala55 segment. We suggest that a significant conformation change is induced in the C-terminal region of FB when it is bound to the Fc portion of IgG. © 1990, American Chemical Society. All rights reserved.