Infinitesimal Harmonic Transformations and Ricci Solitons on Complete Riemannian Manifolds

被引:1
作者
Stepanov, S. E. [1 ]
Tsyganok, I. I. [2 ]
机构
[1] Financial Acad Govt Russian Federat, 49 Leningradskii Pr 49, Moscow 125993, Russia
[2] Russian Univ Cooperat, Vladimir Branch, Vladimir, Russia
关键词
Ricci solitons; infinitesimal harmonic transformations; complete Riemannian manifold;
D O I
10.3103/S1066369X10030138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ricci solitons were introduced by R. Hamilton as natural generalizations of Einstein metrics. A Ricci soliton on a smooth manifold M is a triple (g(0), xi, lambda), where g(0) is a complete Riemannian metric, xi a vector field, and lambda a constant such that the Ricci tensor Ric(0) of the metric g(0) satisfies the equation -2Ric(0) = L xi g(0) + 2 lambda g(0). The following statement is one of the main results of the paper. Let (g(0), xi, lambda) be a Ricci soliton such that (M, g(0)) is a complete noncompact oriented Riemannian manifold, integral(M) parallel to xi parallel to dv < infinity, and the scalar curvature s(0) of g(0) has a constant sign on M, then (M, g(0)) is an Einstein manifold.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 17 条
[1]  
Besse A., 1987, EINSTEIN MANIFOLDS, V1
[2]  
Caminha A., 2009, ARXIV09081447V1MATHD
[3]  
Caminha A., 2009, ARXIV09080786V1MATHD
[4]  
CHOW B, 2004, MATH SURVEYS MONOGRA, V110
[5]  
Chow Bennett, 2006, GRADUATE STUDIES MAT, V77
[6]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[7]  
Gromoll D., 1966, RIEMANNSCHE GEOMETRI
[8]  
HIRSCH MW, 1979, DIFFERENTIAL TOPOLOG
[9]  
Kobayashi S., 1963, FDN DIFFERENTIAL GEO
[10]  
Pigola P., 2009, ARXIV09052868V1MATHD