Initial value problem and soliton solutions of the single-cycle short pulse equation via the Riemann-Hilbert approach

被引:8
作者
Bo, Ge-Qiang [1 ]
Zhang, Wei-Guo [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2018年 / 2卷 / 11期
基金
中国国家自然科学基金;
关键词
single-cycle short pulse equation; initial value problem; Riemann-Hilbert problem;
D O I
10.1088/2399-6528/aaeaf5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper solves the initial value problem of the single-cycle short pulse equation u(xt) = u + 1/2u(u(2))(xx) via the Riemann-Hilbert approach. By converting initial value problem into the Riemnn-Hilbert problem, we have obtained one-soliton solutions and two-soliton solutions for the single-cycle short pulse equation.
引用
收藏
页数:11
相关论文
共 22 条
[1]   On a Riemann-Hilbert problem for the Fokas-Lenells equation [J].
Ai, Liping ;
Xu, Jian .
APPLIED MATHEMATICS LETTERS, 2019, 87 :57-63
[2]   The bi-Hamiltonian structure of the short pulse equation [J].
Brunelli, J. C. .
PHYSICS LETTERS A, 2006, 353 (06) :475-478
[3]   The short pulse hierarchy [J].
Brunelli, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
[4]   Ultra-short pulses in linear and nonlinear media [J].
Chung, Y ;
Jones, CKRT ;
Schäfer, T ;
Wayne, CE .
NONLINEARITY, 2005, 18 (03) :1351-1374
[5]   The short pulse equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry ;
Zielinski, Lech .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (07) :1345-1373
[6]   Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation [J].
Geng, Xianguo ;
Wu, Jianping .
WAVE MOTION, 2016, 60 :62-72
[7]  
Guo B, 2018, APPL ANAL
[8]   A Riemann-Hilbert approach for a new type coupled nonlinear Schrodinger equations [J].
Guo, Boling ;
Liu, Nan ;
Wang, Yufeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) :145-158
[9]  
Hone A, 2018, LETT MATH PHYS, V108, P1
[10]   Solvability of singular integro-differential equations via Riemann-Hilbert problem [J].
Li, Pingrun ;
Ren, Guangbin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (11) :5455-5471