Symbol Rate Estimation Based on Sparse Bayesian Learning

被引:0
作者
Jin Yan [1 ]
Tian Tian [1 ]
Ji Hongbing [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Symbol rate estimation; Sparse Bayesian learning; Cyclic autocorrelation; Unilateral spectrum;
D O I
10.11999/JEIT170906
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing methods for symbol rate estimation of phase coded signals require amounts of sensing data, and are of high computational complexity. This paper analyzes the structure characteristics of BPSK signals, which are employed as the prior information for signal compressing and dimensionality reduction. The sensing matrix can be split into sine and cosine component, combined with the Fourier transform parity. According to the fact that the real and imaginary components of a complex value share the same support set, the symbol rate estimation can be obtained, using unilateral spectral of the delay-product vector reconstructed by multi-task Bayesian compressive sensing. Theoretical analysis and simulation results show that compared with other parameter estimation algorithms, the proposed method can reduce the measurements and significantly improve the real-time ability, while keeping the high reconstruction accuracy.
引用
收藏
页码:1598 / 1603
页数:6
相关论文
共 16 条