STABILITY REGIONS OF SCHUR AND G-STABLE POLYNOMIALS

被引:0
作者
SOLAK, MK [1 ]
PENG, AC [1 ]
机构
[1] CENT MICHIGAN UNIV,DEPT IND & ENGN TECHNOL,MT PLEASANT,MI 48859
关键词
BILINEAR TRANSFORMATION; POLYNOMIAL; STABILITY;
D O I
10.1007/BF00986008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a unified approach to calculation, for a given, nominal, G-stable polynomial, a corresponding stability region in the space of perturbed coefficients
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
[31]   PSEUDO-ZERNIKE POLYNOMIALS FOR NUMERICALLY STABLE PA MODELING USING 3G+SIGNALS [J].
Rawat, Piyush ;
Rawat, Meenakshi ;
Boulejfene, N. .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2014, 56 (11) :2569-2572
[32]   Reflection Coefficients of Polynomials and Stable Polytopes [J].
Nurges, Uelo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1314-1318
[33]   STABILITY ANALYSIS FOR A FAMILY OF POLYNOMIALS [J].
WANG, EP .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (03) :312-318
[34]   Stability Analysis for a Family of Polynomials [J].
王恩平 .
Science China Mathematics, 1993, (03) :312-312
[35]   Stability criteria of matrix polynomials [J].
Hu, Guang-Da ;
Hu, Xiulin .
INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (12) :2973-2978
[36]   Robust Hurwitz and Schur stability via interval positivity [J].
Keel, L. H. ;
Stratton, T. F. ;
Bhattacharyya, S. P. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) :281-290
[37]   Description of polygonal regions by polynomials of bounded degree [J].
Averkov, Gennadiy ;
Bey, Christian .
MONATSHEFTE FUR MATHEMATIK, 2011, 162 (01) :19-27
[38]   Description of polygonal regions by polynomials of bounded degree [J].
Gennadiy Averkov ;
Christian Bey .
Monatshefte für Mathematik, 2011, 162 :19-27
[39]   Stability and D-stability of the family of real polynomials [J].
Kalinina, Elizabeth A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (06) :2635-2650
[40]   Stable regions around Pluto [J].
Winter, S. M. Giuliatti ;
Winter, O. C. ;
Neto, E. Vieira ;
Sfair, R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 430 (03) :1892-1900