STABILITY REGIONS OF SCHUR AND G-STABLE POLYNOMIALS

被引:0
作者
SOLAK, MK [1 ]
PENG, AC [1 ]
机构
[1] CENT MICHIGAN UNIV,DEPT IND & ENGN TECHNOL,MT PLEASANT,MI 48859
关键词
BILINEAR TRANSFORMATION; POLYNOMIAL; STABILITY;
D O I
10.1007/BF00986008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper presents a unified approach to calculation, for a given, nominal, G-stable polynomial, a corresponding stability region in the space of perturbed coefficients
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
  • [21] Hadamard Factorization of Stable Polynomials
    Arturo Loredo-Villalobos, Carlos
    Aguirre-Hernandez, Baltazar
    [J]. ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY, 2011, 1368
  • [22] A new parameterization of stable polynomials
    Djaferis, TE
    Pepyne, DL
    Cushing, DM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (09) : 1546 - 1550
  • [23] Polynomials of Arithmetically Homogeneous Functions: Stability and Hyperstability
    Dan M. Dăianu
    Cristina Mîndruţă
    [J]. Results in Mathematics, 2019, 74
  • [24] Stability and robust stability of multivariate polynomials
    Kharitonov, VL
    Munoz, JAT
    Ramirez-Sosa, MI
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3254 - 3259
  • [25] On stability and robust stability of multivariate polynomials
    Muñoz, JAT
    Kharitonov, VL
    [J]. CONTROL APPLICATIONS OF OPTIMIZATION 2000, VOLS 1 AND 2, 2000, : 479 - 484
  • [26] On the stability of parametric polynomials
    Yannakoudakis, Aristotelis
    Sfakiotakis, Michael
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (12) : 2896 - 2913
  • [27] EXISTENCE AND DETERMINATION OF THE SET OF METZLER MATRICES FOR GIVEN STABLE POLYNOMIALS
    Kaczorek, Tadeusz
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (02) : 389 - 399
  • [28] The Schur stability via the Hurwitz stability analysis using a biquadratic transformation
    Jalili-Kharaajoo, M
    Araabi, BN
    [J]. AUTOMATICA, 2005, 41 (01) : 173 - 176
  • [29] BERNSTEIN TYPE INEQUALITIES FOR SCHUR-SZEGO<spacing diaeresis> COMPOSITION OF POLYNOMIALS
    Manzoor, Zahid
    Shah, W. M.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1313 - 1326
  • [30] Constructing convex directions for stable polynomials
    Özgüler, AB
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) : 1565 - 1569