ON LOCAL ASYMPTOTIC STABILITY OF A MODEL OF EPIDEMIC PROCESS

被引:0
作者
Malygina, Vera Vladimirovna [1 ]
Mulyukov, Mikhail Vadimovich [1 ]
Pertsev, Nikolai Victorovich [2 ]
机构
[1] Perm Natl Res Polytech Univ, Komsomolskiy Pr 29, Perm 614990, Russia
[2] RAS, Sobolev Inst Math, SB, Omsk Div, Pevtsova St 13, Omsk 644033, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2018年 / 15卷
关键词
epidemic process; mathematical model; delay differential equation; stability; stability region;
D O I
10.17377/semi.2018.15.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a model of the epidemic process, and use a system of differential equations with retarded argument for the description of the model. We obtain a number of stability tests for the nontrivial equilibrium point and construct stability regions in the parameter space of the original problem.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 20 条
[1]  
Andronov A., 1946, AUTOMAT REM CONTR+, V7, P95
[2]  
Azbelev N. V., 2001, STABILITY DIFFERENTI
[3]  
Azbelev N. V., 1991, INTRO THEORY LINEAR
[4]  
Bellman R., 1967, DIFFERENTIAL DIFFERE
[5]   Global analysis on delay epidemiological dynamic models with nonlinear incidence [J].
Huang, Gang ;
Takeuchi, Yasuhiro .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :125-139
[6]  
Kolmanovskii V.B., 1981, STABILITY PERIODIC M
[7]  
[Лузянина Т. Luzyanina T.], 2017, [Математическая биология и биоинформатика, Matematicheskaya biologiya i bioinformatika], V12, P496, DOI 10.17537/2017.12.469
[8]  
Mulyukov M. V., 2018, FUNCTIONAL DIFFERENT, P180
[9]  
Mulyukov M. V., 2015, P 8 INT C MOD PROBL, P258
[10]   Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure [J].
Muroya, Yoshiaki ;
Kuniya, Toshikazu ;
Wang, Jinliang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) :415-439