MULTILEVEL ADAPTIVE METHODS FOR INCOMPRESSIBLE-FLOW IN GROOVED CHANNELS

被引:4
作者
LIU, C [1 ]
LIU, Z [1 ]
MCCORMICK, S [1 ]
机构
[1] UNIV COLORADO,COMPUTAT MATH GRP,DENVER,CO 80217
基金
美国国家航空航天局;
关键词
MULTILEVEL ADAPTIVE METHODS; FLOW; GROOVED; CHANNEL; FULLY IMPLICIT;
D O I
10.1016/0377-0427(91)90177-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Incompressible moderate-Reynolds-number flow in a periodically grooved channel is investigated by direct numerical simulation using the finite-volume method on a staggered grid. A second-order, fully-implicit time-marching scheme is used together with a multigrid full approximation scheme (FAS) to accelerate the convergence process. Convergence factors of about 0.15 for each V(2, 2) cycle are observed. The computational results for steady flow show good agreement with that of Ghaddar et al. (1986). A local fine grid is placed about the cavity to achieve better accuracy, without the need for a global fine grid. Both FAC (see McCormick (1989)) and MLAT (see Brandt (1984)) adaptive techniques show optimal efficiency as solvers for the resulting composite grid problem.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 8 条
[1]  
Brandt A, 1984, MULTIGRID TECHNIQUES
[2]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[3]   NUMERICAL INVESTIGATION OF INCOMPRESSIBLE-FLOW IN GROOVED CHANNELS .1. STABILITY AND SELF-SUSTAINED OSCILLATIONS [J].
GHADDAR, NK ;
KORCZAK, KZ ;
MIKIC, BB ;
PATERA, AT .
JOURNAL OF FLUID MECHANICS, 1986, 163 :99-127
[4]  
LIU C, 1980, MULTIGRID METHODS FL
[5]  
LIU C, 1989, THESIS U COLORADO DE
[6]  
McCormick S. F., 1989, MULTILEVEL ADAPTIVE
[7]   CALCULATION PROCEDURE FOR HEAT, MASS AND MOMENTUM-TRANSFER IN 3-DIMENSIONAL PARABOLIC FLOWS [J].
PATANKAR, SV ;
SPALDING, DB .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1972, 15 (10) :1787-&
[8]  
STREETT CL, 1990, NUMERICAL SIMULATION