PATTERN SELECTION IN THE BENARD-PROBLEM FOR A VISCOELASTIC FLUID

被引:19
作者
RENARDY, M [1 ]
RENARDY, Y [1 ]
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,ICAM,BLACKSBURG,VA 24061
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1992年 / 43卷 / 01期
关键词
D O I
10.1007/BF00944744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss pattern selection in the Benard problem for a viscoelastic fluid. Double periodicity of the solutions with respect to a hexagonal lattice is assumed. Both steady and oscillatory onsets of instability are considered. For steady onset, we find that the rolls are the only bifurcating solution which can be stable.
引用
收藏
页码:154 / 180
页数:27
相关论文
共 19 条
[1]   BIFURCATION ON THE HEXAGONAL LATTICE AND THE PLANAR BENARD-PROBLEM [J].
BUZANO, E ;
GOLUBITSKY, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :617-667
[2]  
Chow S.-N., 1982, METHODS BIFURCATION
[3]  
Drazin P.G., 2004, HYDRODYNAMIC STABILI, DOI [10.1017/CBO9780511616938, DOI 10.1017/CBO9780511616938]
[4]   NONLINEAR THERMAL-CONVECTION IN AN ELASTOVISCOUS LAYER HEATED FROM BELOW [J].
ELTAYEB, IA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 356 (1685) :161-176
[5]   SYMMETRIES AND PATTERN SELECTION IN RAYLEIGH-BENARD CONVECTION [J].
GOLUBITSKY, M ;
SWIFT, JW ;
KNOBLOCH, E .
PHYSICA D, 1984, 10 (03) :249-276
[6]   HOPF-BIFURCATION IN THE PRESENCE OF SYMMETRY [J].
GOLUBITSKY, M ;
STEWART, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 87 (02) :107-165
[7]   OSCILLATING CONVECTION IN AN ELASTICOVISCOUS LIQUID [J].
GREEN, T .
PHYSICS OF FLUIDS, 1968, 11 (07) :1410-&
[8]  
Kirchgassner K., 1979, MATH METHOD APPL SCI, V1, P453
[9]   ON THE CONVECTED LINEAR-STABILITY OF A VISCOELASTIC OLDROYD-B FLUID HEATED FROM BELOW [J].
KOLKKA, RW ;
IERLEY, GR .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1987, 25 (02) :209-237
[10]  
Liang S. F., 1970, Rheologica Acta, V9, P447, DOI 10.1007/BF01975415