PERIODIC-SOLUTIONS OF CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS WITH A QUADRATIC GROWTH AT THE ORIGIN AND SUPERQUADRATIC AT INFINITY

被引:16
作者
GIRARDI, M [1 ]
MATZEU, M [1 ]
机构
[1] UNIV ROME,DEPARTIMENTO COMP SCI,I-00185 ROME,ITALY
来源
ANNALI DI MATEMATICA PURA ED APPLICATA | 1987年 / 147卷
关键词
D O I
10.1007/BF01762410
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:21 / 72
页数:52
相关论文
共 31 条
[1]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN-SYSTEMS [J].
AMANN, H ;
ZEHNDER, E .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :149-189
[2]  
AMANN H, 1980, ANN SCU NORM SUP PIS, V7, P539
[3]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF CONVEX HAMILTONIAN-SYSTEMS [J].
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ANNALEN, 1981, 255 (03) :405-421
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
AMBROSETTI A, SOLUTIONS MINIMAL PE
[6]  
AMBROSETTI A, 1985, SYMMETRY BREAKING CR
[7]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[8]  
BENCI V, 1982, SPRINGER VERLAG LECT, V964, P86
[9]   EXISTENCE OF MULTIPLE PERIODIC-ORBITS ON STAR-SHAPED HAMILTONIAN SURFACES [J].
BERESTYCKI, H ;
LASRY, JM ;
MANCINI, G ;
RUF, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :253-289
[10]   HAMILTONIAN TRAJECTORIES HAVING PRESCRIBED MINIMAL PERIOD [J].
CLARKE, FH ;
EKELAND, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :103-116