Modules with semi-local endomorphism ring

被引:40
作者
Herbera, D
Shamsuddin, A
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
[2] AMER UNIV BEIRUT,DEPT MATH,BEIRUT,LEBANON
关键词
D O I
10.2307/2161881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the concept of dual Goldie dimension and a characterization of semi-local rings due to Camps and Dicks (1993) to find some classes of modules with semi-local endomorphism ring. We deduce that Linearly compact modules have semi-local endomorphism ring, cancel from direct sums and satisfy the n th root uniqueness property. We also deduce that modules over commutative rings satisfying AB5* also cancel from direct sums and satisfy the n th root uniqueness property.
引用
收藏
页码:3593 / 3600
页数:8
相关论文
共 22 条
[1]  
Anderson F. W., 1992, GRAD TEXTS MATH, V13
[2]  
Bass H., 1964, PUBL MATH-PARIS, V22, P5
[3]   POWER CANCELLATION FOR ARTINIAN-MODULES [J].
CAMPS, R ;
MENAL, P .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (07) :2081-2095
[4]  
DISCHINGER F, 1976, CR ACAD SCI A MATH, V283, P571
[5]   KRULL-SCHMIDT AND CANCELLATION OVER LOCAL RINGS [J].
EVANS, EG .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :115-121
[6]  
FACCHINI A, IN PRESS P AM MATH S
[7]  
Fuchs L., 1970, J REINE ANGEW MATH, V239, P169
[8]   SURJECTIVE ENDOMORPHISMS OF FINITELY GENERATED MODULES [J].
GOODEARL, KR .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (03) :589-609
[9]   ON DUAL RINGS AND THEIR MODULES [J].
HAJARNAVIS, CR ;
NORTON, NC .
JOURNAL OF ALGEBRA, 1985, 93 (02) :253-266
[10]  
HANNA A, 1984, DUALITY CATEGORY MOD, V49