AN EXTENSION OF THE THEOREM OF MILNOR AND THURSTON ON THE ZETA-FUNCTIONS OF INTERVAL MAPS

被引:31
作者
BALADI, V
RUELLE, D
机构
[1] ENS LYON,UMPA,CNRS,UMR 128,F-69364 LYON 07,FRANCE
[2] INST HAUTES ETUDES SCI,F-91440 BURES SUR YVETTE,FRANCE
关键词
D O I
10.1017/S0143385700008087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a piecewise continuous, piecewise monotone interval map and a piecewise constant weight. With these data we associate a weighted kneading matrix which generalizes the Milnor-Thurston matrix. We show that the determinant of this matrix is related to a natural weighted zeta function.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 11 条
[1]   ZETA-FUNCTIONS AND TRANSFER OPERATORS FOR PIECEWISE MONOTONE TRANSFORMATIONS [J].
BALADI, V ;
KELLER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :459-477
[2]  
HOFBAUER F, 1984, J REINE ANGEW MATH, V352, P100
[3]   SPECTRAL THEORY, ZETA-FUNCTIONS AND THE DISTRIBUTION OF PERIODIC POINTS FOR COLLET ECKMANN MAPS [J].
KELLER, G ;
NOWICKI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :31-69
[4]  
MAYER DH, 1980, SPRINGER LECTURE NOT, V123
[5]  
MILNOR J, 1988, SPRINGER LECTURE NOT, V1342
[6]  
MORI M, 1990, OSAKA J MATH, V27, P81
[7]  
MORI M, 1991, ADV S DY SY, V9, P388
[8]   WHAT YOU NEED TO KNOW TO KNEAD [J].
PRESTON, C .
ADVANCES IN MATHEMATICS, 1989, 78 (02) :192-252
[10]  
RUELLE D, 1993, HELV PHYS ACTA, V66, P181