FEASIBLE NONPARAMETRIC-ESTIMATION OF MULTIARGUMENT MONOTONE-FUNCTIONS

被引:29
作者
MUKARJEE, H [1 ]
STERN, S [1 ]
机构
[1] UNIV VIRGINIA,DEPT ECON,CHARLOTTESVILLE,VA 22901
关键词
ISOTONIC; MULTIARGUMENT; NONPARAMETRIC;
D O I
10.2307/2291202
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a two-stage estimation procedure that uses an ad hoc but very easily implemented isotonization of a kernel estimator. This procedure yields an isotonic estimator with the convergence properties of the kernel estimator. Although the isotonization in the second stage does not satisfy the least squares condition. this hybrid estimator may be considered to be a multidimensional generalization of similar procedures for the one-dimensional case suggested by Friedman and Tibshirani and by Mukarjee. We derive some of the asymptotic properties of our estimator and demonstrate other statistical properties with Monte-Carlo studies. We conclude by providing a real data example.
引用
收藏
页码:77 / 80
页数:4
相关论文
共 11 条
[1]  
BRUNK H. D., 1957, PAC J MATH, V7, P833
[2]  
Brunk HD., 1972, STAT-US
[3]  
Dykstra, 1988, ORDER RESTRICTED STA
[4]   AN ALGORITHM FOR ISOTONIC REGRESSION FOR 2 OR MORE INDEPENDENT VARIABLES [J].
DYKSTRA, RL ;
ROBERTSON, T .
ANNALS OF STATISTICS, 1982, 10 (03) :708-716
[5]   THE MONOTONE SMOOTHING OF SCATTERPLOTS [J].
FRIEDMAN, J ;
TIBSHIRANI, R .
TECHNOMETRICS, 1984, 26 (03) :243-250
[6]  
Lee L, 1991, NONPARAMETRIC SEMIPA, P3
[8]   MONOTONE NONPARAMETRIC REGRESSION [J].
MUKERJEE, H .
ANNALS OF STATISTICS, 1988, 16 (02) :741-750
[9]   OPTIMAL GLOBAL RATES OF CONVERGENCE FOR NONPARAMETRIC REGRESSION [J].
STONE, CJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1040-1053
[10]  
[No title captured]