SYMMETRY OPERATORS FOR MAXWELLS EQUATIONS ON CURVED SPACE-TIME

被引:17
作者
KALNINS, EG [1 ]
MCLENAGHAN, RG [1 ]
WILLIAMS, GC [1 ]
机构
[1] UNIV WATERLOO,DEPT APPL MATH,WATERLOO N2L 3G1,ONTARIO,CANADA
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1992年 / 439卷 / 1905期
关键词
D O I
10.1098/rspa.1992.0136
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell's equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spinors. Operators of this type play a role in the solution of Maxwell's equations via separation of variables in the Kerr background space-time.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 21 条
[1]   KILLING TENSOR QUANTUM NUMBERS AND CONSERVED CURRENTS IN CURVED SPACE [J].
CARTER, B .
PHYSICAL REVIEW D, 1977, 16 (12) :3395-3414
[2]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[3]   GENERALIZED TOTAL ANGULAR-MOMENTUM OPERATOR FOR THE DIRAC-EQUATION IN CURVED SPACE-TIME [J].
CARTER, B ;
MCLENAGHAN, RG .
PHYSICAL REVIEW D, 1979, 19 (04) :1093-1097
[4]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[5]  
CARTER B, 1982, 2ND P MARC GROSSM C, P575
[6]   SOLUTION OF DIRACS EQUATION IN KERR GEOMETRY [J].
CHANDRASEKHAR, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1659) :571-575
[7]   EXHAUSTIVE INTEGRATION AND A SINGLE EXPRESSION FOR THE GENERAL-SOLUTION OF THE TYPE-D VACUUM AND ELECTROVAC FIELD-EQUATIONS WITH COSMOLOGICAL CONSTANT FOR A NONSINGULAR ALIGNED MAXWELL FIELD [J].
DEBEVER, R ;
KAMRAN, N ;
MCLENAGHAN, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1955-1972
[8]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[9]   KILLING-YANO TENSORS AND VARIABLE SEPARATION IN KERR GEOMETRY [J].
KALNINS, EG ;
MILLER, W ;
WILLIAMS, GC .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2360-2365
[10]   KILLING TENSORS AND NONORTHOGONAL VARIABLE SEPARATION FOR HAMILTON-JACOBI EQUATIONS [J].
KALNINS, EG ;
MILLER, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :617-629