AN EXTENSION OF A CLASS OF GENERATING FUNCTIONS FOR THE CESARO POLYNOMIALS OF THREE VARIABLES

被引:0
作者
Ozmen, Nejla [1 ]
Erkus-Duman, Esra [2 ]
机构
[1] Duzce Univ, Fac Art & Sci, Dept Math, TR-81620 Duzce, Turkey
[2] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
关键词
Cesaro polynomials; generating function; multilinear and multilateral generating function; recurrence relation; hypergeometric function;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study deals with some new properties for the Cesaro polynomials of three variables. The results obtained here include various families of multilinear and multilateral generating functions and their miscellaneous properties. We also derive an application giving certain families of bilateral generating functions for the Cesaro polynomials and the generalized Lauricella functions. At the end, we discuss some special cases for this theorem.
引用
收藏
页码:925 / 936
页数:12
相关论文
共 50 条
[21]   A Library for Calculating Polynomials Based on Compositae of Generating Functions [J].
Kruchinin, Dmitry, V ;
Melman, Vadim S. ;
Shablya, Yuriy, V ;
Shelupanov, Alexander A. .
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
[22]   The Computation of Expected Values and Moments of Special Polynomials via Characteristic and Generating Functions [J].
Simsek, Burcin ;
Simsek, Buket .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
[23]   Identities derived from a particular class of generating functions for Frobenius-Euler type Simsek numbers and polynomials [J].
Agyuz, Erkan .
FILOMAT, 2024, 38 (05) :1531-1545
[24]   GENERATING FUNCTIONS FOR THE BERNSTEIN TYPE POLYNOMIALS: A NEW APPROACH TO DERIVING IDENTITIES AND APPLICATIONS FOR THE POLYNOMIALS [J].
Simsek, Yilmaz .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (01) :1-14
[25]   BILATERAL AND BILINEAR GENERATING FUNCTIONS FOR THE MODIFIED GENERALIZED SYLVESTER POLYNOMIALS [J].
Ozmen, Nejla .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02) :279-293
[26]   New proofs of generating functions for Rogers-Szego polynomials [J].
Cao, Jian .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :486-492
[27]   A Method for Obtaining Expressions for Polynomials Based on a Composition of Generating Functions [J].
Kruchinin, D. V. ;
Kruchinin, V. V. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :383-386
[28]   BILATERAL AND BILINEAR GENERATING FUNCTIONS FOR THE GENERALIZED ZERNIKE OR DISC POLYNOMIALS [J].
Aktas, Rabia ;
Tasdelen, Fatma ;
Yavuz, Nuray .
ARS COMBINATORIA, 2013, 111 :389-400
[29]   Application of a composition of generating functions for obtaining explicit formulas of polynomials [J].
Kruchinin, Dmitry V. ;
Kruchinin, Vladimir V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (01) :161-171
[30]   GENERATING MATRIX FUNCTIONS FOR CHEBYSHEV MATRIX POLYNOMIALS OF THE SECOND KIND [J].
Altin, Abdullah ;
Cekim, Bayram .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (01) :25-32