Numerical Solution of Schrodinger Equation by Crank-Nicolson Method

被引:0
|
作者
Khan, Amin [1 ]
Ahsan, Muhammad [1 ]
Bonyah, Ebenezer [2 ]
Jan, Rashid [1 ]
Nisar, Muhammad [3 ,4 ]
Abdel-Aty, Abdel-Haleem [5 ,6 ]
Yahia, Ibrahim S. [7 ,8 ,9 ]
机构
[1] King Khalid Univ, Dept Phys, Fac Sci, POB 9004, Abha, U Arab Emirates
[2] Akenten Appiah Menka Univ Skills Traning & Enterp, Dept Math Educ, Kumasi, Ghana
[3] Macquaire Univ Sydney, Dept Math Statiscs, Sydney, NSW 2109, Australia
[4] FATA Univ Bisha, Dept Math, Darra Adam Khel 26100, Pakistan
[5] Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[6] Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, Egypt
[7] King Khalid Univ, Dept Phys, Lab Nano Smart Mat Sci & Technol LNSMST, Fac Sci, POB 9004, Abha 61413, Saudi Arabia
[8] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
[9] Ain Shams Univ, Dept Phys, Semicond Lab, Nanosci Lab Environm & Biomed Applicat NLEBA, Cairo 11757, Egypt
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we implemented the well-known Crank-Nicolson scheme for the numerical solution of Schrodinger equation. The numerical results converge to the exact solution because the Crank-Nicolson scheme is unconditionally stable and accurate. We have compared the results for different parameters with analytical solution, and it is found that the Crank-Nicolson scheme is suitable for the numerical solution of Schrodinger equations. Three different problems are included to verify the accuracy, stability, and capability of the Crank-Nicolson scheme.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [2] Numerical Solution of Schrödinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    Mathematical Problems in Engineering, 2022, 2022
  • [3] ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Paraschis, Panagiotis
    Zouraris, Georgios E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 245 - 261
  • [4] A generalized Crank-Nicolson method for the solution of the subdiffusion equation
    Blasik, Marek
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 726 - 729
  • [5] Crank-Nicolson method for the numerical solution of models of excitability
    Lopez-Marcos, J.C.
    Numerical Methods for Partial Differential Equations, 1994, 10 (03) : 323 - 344
  • [6] Crank-Nicolson Implicit Method For The Nonlinear Schrodinger Equation With Variable Coefficient
    Choy, Yaan Yee
    Tan, Wool Nee
    Tay, Kim Gaik
    Ong, Chee Tong
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 76 - 82
  • [7] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [8] Multisymplecticity of Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Chen, JB
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2348 - 2349
  • [9] Invariantization of the Crank-Nicolson method for Burgers' equation
    Kim, Pilwon
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 243 - 254
  • [10] Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Cai, Wenjun
    Wang, Yushun
    Song, Yongzhong
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2403 - 2411