A LINEAR WAVE-EQUATION IN A TIME-DEPENDENT DOMAIN

被引:7
作者
SIKORAV, J
机构
[1] Institut National de Recherche en Informatique et Automatique, Domaine de Voluceau
关键词
D O I
10.1016/0022-247X(90)90230-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:533 / 548
页数:16
相关论文
共 50 条
[41]   Asymptotic behaviour for wave equation with time-dependent coefficients [J].
Matsuyama, Tokio .
Annali dell'Universita di Ferrara Sezione VII, Scienze Matematiche, Vol 52, No 2, 2006, 52 (02) :383-393
[42]   TIME DOMAIN ANALYSIS OF NORMAL MODE, PARABOLIC, AND RAY SOLUTIONS OF THE WAVE-EQUATION [J].
BODEN, L ;
BOWLIN, JB ;
SPIESBERGER, JL .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 90 (02) :954-958
[43]   SPACE DERIVATIVES IN THE TIME-DOMAIN BEM ANALYSIS FOR THE SCALAR WAVE-EQUATION [J].
CARRER, JAM ;
MANSUR, WJ .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1994, 13 (01) :67-74
[44]   Exact solutions and critical behaviour for a linear growth-diffusion equation on a time-dependent domain [J].
Allwright, Jane .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2022, 65 (01) :53-79
[45]   TRANSIENT WAVE ANALYSIS IN A LINEAR TIME-DEPENDENT MATERIAL [J].
GLAUZ, RD ;
LEE, EH .
JOURNAL OF APPLIED PHYSICS, 1954, 25 (08) :947-953
[47]   A time- and spaceadaptive algorithm for the linear time-dependent Schrodinger equation [J].
Dorfler, W .
NUMERISCHE MATHEMATIK, 1996, 73 (04) :419-448
[48]   Recognition of a time-dependent source in a time-fractional wave equation [J].
Siskova, K. ;
Slodicka, M. .
APPLIED NUMERICAL MATHEMATICS, 2017, 121 :1-17
[49]   The Klein-Gordon Equation in a Domain with Time-Dependent Boundary [J].
Pelloni, B. ;
Pinotsis, D. A. .
STUDIES IN APPLIED MATHEMATICS, 2008, 121 (03) :291-312
[50]   On the Schrodinger Equation for Time-Dependent Hamiltonians with a Constant Form Domain [J].
Balmaseda, Aitor ;
Lonigro, Davide ;
Perez-Pardo, Juan Manuel .
MATHEMATICS, 2022, 10 (02)