A LINEAR WAVE-EQUATION IN A TIME-DEPENDENT DOMAIN

被引:7
作者
SIKORAV, J
机构
[1] Institut National de Recherche en Informatique et Automatique, Domaine de Voluceau
关键词
D O I
10.1016/0022-247X(90)90230-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:533 / 548
页数:16
相关论文
共 50 条
[31]   Prestack wave-equation time migration [J].
Yan, Fan ;
Yang, Jidong ;
Huang, Jianping .
GEOPHYSICS, 2025, 90 (02) :S17-S28
[32]   On the Time-Dependent Solutions of the Schrodinger Equation. I. The Linear Time-Dependent Potential [J].
Palma, A. ;
Villa, M. ;
Sandoval, L. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (7-8) :1646-1650
[33]   On stationary and time-dependent solutions to the linear Boltzmann equation [J].
Pettersson, R .
RAREFIED GAS DYNAMICS, 2003, 663 :51-58
[35]   ON A QUASI-LINEAR WAVE-EQUATION WITH MEMORY [J].
TORREJON, R ;
YONG, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (01) :61-78
[36]   NON-LINEAR WAVE-EQUATION FOR TORSION [J].
DRECHSLER, W .
PHYSICS LETTERS B, 1981, 107 (06) :415-419
[37]   On time-dependent and stationary solutions to the linear Boltzmann equation [J].
Pettersson, R .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2003, 32 (3-4) :385-398
[38]   Solution of the Schrodinger equation for the time-dependent linear potential [J].
Guedes, I .
PHYSICAL REVIEW A, 2001, 63 (03) :1-3
[39]   Asymptotic behaviour for wave equation with time-dependent coefficients [J].
Tokio Matsuyama .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2006, 52 :383-393
[40]   A minimization approach to the wave equation on time-dependent domains [J].
Dal Maso, Gianni ;
De Luca, Lucia .
ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (04) :425-436