Local and parallel finite element method for Laplace eigenvalue problem

被引:0
|
作者
Tang, Geng [1 ]
Yang, Yidu [1 ]
Li, Hao [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2014年 / 52卷 / 08期
基金
中国国家自然科学基金;
关键词
Laplace eigenvalue problem; finite element; local and parallel algorithm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the work of Xu and Zhou [Acta. Math. Appl. Sin,18(2002), pp. 185-200], this paper establishes the local and parallel finite element method for solving the Laplace eigenvalue problem with Dirichlet boundary conditions. Theoretical analysis and numerical experiment are given in this paper to verify the efficiency of the scheme.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [1] Local and parallel finite element algorithms for the Steklov eigenvalue problem
    Bi, Hai
    Li, Zhengxia
    Yang, Yidu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 399 - 417
  • [2] Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem
    Bi, Hai
    Han, Jiayu
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 351 - 375
  • [3] Local and Parallel Finite Element Algorithms for the Transmission Eigenvalue Problem
    Hai Bi
    Jiayu Han
    Yidu Yang
    Journal of Scientific Computing, 2019, 78 : 351 - 375
  • [4] Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration
    Zhao, Ruilin
    Yang, Yidu
    Bi, Hai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 851 - 869
  • [5] Local and Parallel Finite Element Schemes for the Elastic Transmission Eigenvalue Problem
    Bi, Hai
    Han, Jiayu
    Yang, Yidu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 829 - 858
  • [6] Adaptive finite element methods for the Laplace eigenvalue problem
    Hoppe, R. H. W.
    Wu, H.
    Zhang, Z.
    JOURNAL OF NUMERICAL MATHEMATICS, 2010, 18 (04) : 281 - 302
  • [7] An Adaptive Nonconforming Finite Element Algorithm for Laplace Eigenvalue Problem
    Yu, Yuanyuan
    Yang, Yidu
    Han, Jiayu
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
    Bi, Hai
    Yang, Yidu
    Li, Hao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2575 - A2597
  • [9] Local and parallel finite element algorithms for eigenvalue problems
    Xu J.
    Zhou A.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (2) : 185 - 200
  • [10] Local and parallel finite element algorithms for eigenvalue problem with homogeneous mixed boundary conditions
    Li, Zhengxia
    Yang, Yidu
    Li, Hao
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (02): : 131 - 140