LOCAL EXISTENCE FOR PARABOLIC PROBLEMS WITH FULLY NONLINEAR BOUNDARY-CONDITION - AN LP-APPROACH

被引:12
|
作者
WEIDEMAIER, P [1 ]
机构
[1] UNIV BAYREUTH,FAC MATH & PHYS,W-8580 BAYREUTH,GERMANY
来源
关键词
D O I
10.1007/BF01764128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem (a(i) = a(i)(x, t, u, p)) of variational form and arises in heat conduction) in the Sobolev Space W(p)2,1 (OMEGA x x (0, T)), OMEGA subset-of R(n), p > n + 2. Existence of a local (in time) solution is proved under a natural compatibility condition between the data (Theorem 2. 1). This solution is also globally unique. An outlook to similar problems for parabolic systems is given (section 4). Our method also applies to quasilinear equations with conormal b.c. (cf. (P), end of section 2).
引用
收藏
页码:207 / 222
页数:16
相关论文
共 50 条