EVERY TOTALLY DISCONNECTED SEPARABLE METRIZABLE TOPOLOGICAL GROUP IS AN AUTOHOMEOMORPHISM GROUP

被引:1
作者
VANMILL, J
机构
[1] FREE UNIV AMSTERDAM,FAC WISKUNDE & INFORMAT,1081 HV AMSTERDAM,NETHERLANDS
[2] UNIV AMSTERDAM,FAC WISKUNDE & INFORMAT,1018 WB AMSTERDAM,NETHERLANDS
关键词
compact open topology; Hilbert space; homeomorphism group; space of measurable functions; totally disconnected space;
D O I
10.1016/0166-8641(90)90098-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
De Groot proved that every group is the autohomeomorphism group of some metrizable space. A space is totally disconnected if every connected subset of it contains at most one point. We prove that every separable metrizable totally disconnected topological group is topologically isomorphic to the autohomeomorphism group of some separable metrizable space, when given the compact-open topology. It is known that, for example, the circle group cannot be realized in this way. © 1990.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 9 条
[1]   ON DIMENSIONS OF CERTAIN SPACES OF HOMEOMORPHISMS [J].
BRECHNER, BL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) :516-&
[2]  
CHAPMAN TA, 1976, CBMS REGIONAL C SERI, V28
[3]   GROUPS REPRESENTED BY HOMEOMORPHISM GROUPS .1. [J].
DEGROOT, J .
MATHEMATISCHE ANNALEN, 1959, 138 (01) :80-102
[4]  
Engelking R, 1977, MATH MONOGRAPHS, V60
[5]  
Engelking R., 1978, DIMENSION THEORY
[6]   AN ALMOST UNIQUELY HOMOGENEOUS SUBGROUP OF RN [J].
KEESLING, JE ;
WILSON, DC .
TOPOLOGY AND ITS APPLICATIONS, 1986, 22 (02) :183-190
[7]  
van Mill J., 1987, MATH JPN, V32, P267
[8]  
VANMILL J, 1987, P AM MATH SOC, V101, P173
[9]  
VANMILL J, 1982, MATH ANN, V259, P143