EIGENVALUE INEQUALITIES AND SCHUBERT CALCULUS

被引:24
作者
HELMKE, U [1 ]
ROSENTHAL, J [1 ]
机构
[1] UNIV NOTRE DAME,NOTRE DAME,IN 46556
关键词
D O I
10.1002/mana.19951710113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques from algebraic topology we derive linear inequalities which relate the spectrum of a set of Hermitian matrices A1, ..., A(r) is-an-element-of C(nxn) with the spectrum of the sum A1 + ... + A(r). These extend eigenvalue inequalities due to Freede-Thompson and Horn for sums of eigenvalues of two Hermitian matrices.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 18 条
[1]  
BHATIA R, 1987, RES NOTES MATH, V162
[2]   MULTIVARIABLE NYQUIST CRITERIA, ROOT LOCI, AND POLE PLACEMENT - A GEOMETRIC VIEWPOINT [J].
BROCKETT, RW ;
BYRNES, CI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :271-284
[3]  
FULTON W, 1984, ERGEBNISSE MATH
[4]  
GRIFFITHS P, 1978, PRINCIPLES ALGEBRAIC
[5]  
HERSCH J, 1962, CR HEBD ACAD SCI, V254, P1559
[6]  
Hiller H., 1982, RES NOTES MATH, V54
[7]   EIGENVALUES OF SUMS OF HERMITIAN MATRICES [J].
HORN, A .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) :225-&
[8]  
JOHNSON S, 1979, THESIS U CALIFORNIA
[9]  
LIDSKII BV, 1982, FUNCTIONAL ANAL APPL, V10, P139
[10]   MINIMAX PROBLEMS ON GRASSMANN MANIFOLDS - SUMS OF EIGENVALUES [J].
RIDDELL, RC .
ADVANCES IN MATHEMATICS, 1984, 54 (02) :107-199