3-FOLD LOG FLIPS

被引:149
作者
SHOKUROV, VV
机构
来源
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS | 1993年 / 40卷 / 01期
关键词
D O I
10.1070/IM1993v040n01ABEH001862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that 3-fold log flips exist. We deduce the existence of log canonical and Q-factorial log terminal models, as well as a positive answer to the inversion problem for log canonical and log terminal adjunction.
引用
收藏
页码:95 / 202
页数:108
相关论文
共 33 条
[1]  
Brieskorn E., 1968, INVENT MATH, V4, P336, DOI 10.1007/BF01425318
[2]  
ESNAULT H, 1988, MATH ANN, V271, P439
[3]  
ILIEV AI, 1986, MOSCOW U B, V41
[4]   THE ASYMPTOTIC-BEHAVIOR OF PLURIGENERA FOR A NORMAL ISOLATED SINGULARITY [J].
ISHII, S .
MATHEMATISCHE ANNALEN, 1990, 286 (04) :803-812
[5]   THE CONE OF CURVES OF ALGEBRAIC-VARIETIES [J].
KAWAMATA, Y .
ANNALS OF MATHEMATICS, 1984, 119 (03) :603-633
[6]   ABUNDANCE THEOREM FOR MINIMAL THREEFOLDS [J].
KAWAMATA, Y .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :229-246
[7]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[8]  
KAWAMATA Y, 1992, INT J MATH, V3, P351
[9]  
Kawamata Y., 1979, ALGEBRAIC GEOM, V732, P215
[10]  
KAWAMATA Y, IN PRESS INT J MATH