Eigenvalue Problem for Partial Differential Equations with Deviating Arguments and Perturbation Theory

被引:0
作者
Sidorov, A. M. [1 ]
机构
[1] Kazan Volga Reg Fed Univ, Inst Comput Math & Informat Technol, Dept Math Stat, Kremlevskaya Ul 18, Kazan 420008, Tatarstan, Russia
关键词
Differential equations with deviating arguments; eigenvalue problem; perturbation method;
D O I
10.1134/S1995080216040168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we formulate a spectral problem for partial differential equations with deviating arguments and give a justification of the perturbation method for this problem.
引用
收藏
页码:504 / 508
页数:5
相关论文
共 50 条
[21]   Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions [J].
Wenxia Wang ;
Xiaotong Guo .
Boundary Value Problems, 2016
[22]   Perturbation analysis for the eigenvalue problem of a formal product of matrices [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
BIT NUMERICAL MATHEMATICS, 2002, 42 (01) :1-43
[23]   Perturbation Analysis for the Eigenvalue Problem of a Formal Product of Matrices [J].
Peter Benner ;
Volker Mehrmann ;
Hongguo Xu .
BIT Numerical Mathematics, 2002, 42 :1-43
[24]   On a Nonstandard Perturbation Method for Proving the Existence of Nonlinearizable Solutions in a Nonlinear Eigenvalue Problem Arising in Waveguide Theory [J].
Valovik, D. V. ;
Dyundyaeva, A. A. ;
Tikhov, S. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (10) :2351-2367
[26]   A SPECTRAL METHOD FOR THE EIGENVALUE PROBLEM FOR ELLIPTIC EQUATIONS [J].
Atkinson, Kendall ;
Hansen, Olaf .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 :386-412
[27]   Perturbation of null spaces with application to the eigenvalue problem and generalized inverses [J].
Avrachenkov, KE ;
Haviv, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :1-25
[28]   An eigenvalue problem involving an anisotropic differential operator [J].
Farcaseanu, Maria .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (03) :297-306
[29]   Accurate modal perturbation in non-self-adjoint eigenvalue problem [J].
Liu, XL .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (10) :715-725
[30]   A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations [J].
Liu, Tao .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (07) :1519-1523