VARIABLE STEPS FOR REVERSIBLE INTEGRATION METHODS

被引:57
作者
STOFFER, D
机构
[1] Department of Mathematics, ETH-Zürich, Zürich
关键词
REVERSIBLE INTEGRATION; SYMPLECTIC INTEGRATORS; VARIABLE STEP SIZE; LONG TIME INTEGRATION;
D O I
10.1007/BF02238234
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Conventional variable-step implementation of symplectic or reversible integration methods destroy the symplectic or reversible structure of the system. We show that to preserve the symplectic structure of a method the step size has to be kept almost constant. For reversible methods variable steps are possible but the step size has to be equal for ''reflected'' steps. We demonstrate possible ways to construct reversible variable step size methods. Numerical experiments show that for the Kepler problem the new methods perform better than conventional variable step size methods or symplectic constant step size methods. In particular they exhibit linear growth of the global error (as symplectic methods with constant step size).
引用
收藏
页码:1 / 22
页数:22
相关论文
共 20 条
[1]  
CALVO MP, VARIABLE STEPS SYMPL, P34
[2]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[3]  
Hairer E., 1993, SOLVING ORDINARY DIF
[4]  
HAIRER E, 1988, COMMUNICATION 1102
[5]   MULTISTEP METHODS ARE ESSENTIALLY ONE-STEP METHODS [J].
KIRCHGRABER, U .
NUMERISCHE MATHEMATIK, 1986, 48 (01) :85-90
[6]  
LASAGNI F, 1990, INTEGRATION METHODS
[7]   CANONICAL RUNGE-KUTTA METHODS [J].
LASAGNI, FM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (06) :952-953
[8]  
MCLACHLAN RI, 1993, SURVEY OPEN PROBLEMS
[9]  
Moser J., 1973, STABLE RANDOM MOTION
[10]   AN EXPLICIT RUNGE-KUTTA-NYSTROM METHOD IS CANONICAL IF AND ONLY IF ITS ADJOINT IS EXPLICIT [J].
OKUNBOR, D ;
SKEEL, RD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :521-527