Optimization for Anchor-Free Object Detection via Scale-Independent GIoU Loss

被引:0
|
作者
Cui, Min [1 ]
Duan, Yiming [2 ]
Pan, Chun [1 ]
Wang, Jiaolong [1 ]
Liu, Haitao [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things, Wuxi 200240, Peoples R China
[2] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Shape; Detectors; Object detection; Loss measurement; Convergence; Shape measurement; Optimization; Anchor-free; arbitrary-oriented object detection; regression loss function; scale independence;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Arbitrary-oriented target detection is widely used in optical remote-sensing image processing, and there have been lots of anchor-based detectors using horizontal bounding boxes. However, the image targets of various scales and shapes make it difficult to tune optimal anchor parameters, whereas the complex background and nonmaximum suppression (NMS) require well-aligned bounding box to predict dense targets. In this letter, a scale-independent IoU (SIoU) loss is proposed for bounding box regression, which can adaptively adjust the shape of predicted boxes and speed up the convergence. Besides, the regression branch of the fully convolutional one-stage object detector (FCOS) is refined to implement the novel intersection over union (IoU) loss for rotated bounding box regression. Extensive experiments on HRSC2016 and a large-scale dataset for object detection in aerial images (DOTA) show that our method obtains 88.1% mean average precision (mAP) under an IoU threshold of 0.5 on HRSC2016, which is 1.1% higher than generalized IoU (GIoU) loss and 0.7% than complete IoU (CIoU) loss.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A fully convolutional anchor-free object detector
    Zhang, Taoshan
    Li, Zheng
    Sun, Zhikuan
    Zhu, Lin
    VISUAL COMPUTER, 2023, 39 (02) : 569 - 580
  • [22] A fully convolutional anchor-free object detector
    Taoshan Zhang
    Zheng Li
    Zhikuan Sun
    Lin Zhu
    The Visual Computer, 2023, 39 : 569 - 580
  • [23] Anchor-free scale adaptive pedestrian detection algorithm
    Zou Y.-Q.
    Xiao Z.-H.
    Tang X.-F.
    Lai P.-J.
    Tang S.-L.
    Zhang Y.-X.
    Tang J.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (02): : 295 - 302
  • [24] An Anchor-Free Network With Density Map and Attention Mechanism for Multiscale Object Detection in Aerial Images
    Guo, Yiyou
    Tong, Xiaohua
    Xu, Xiong
    Liu, Sicong
    Feng, Yongjiu
    Xie, Huan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Integrally Mixing Pyramid Representations for Anchor-Free Object Detection in Aerial Imagery
    Zhang, Cong
    Xiao, Jun
    Yang, Cuixin
    Zhou, Jingchun
    Lam, Kin-Man
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [26] Domain Adaptation of Anchor-Free object detection for urban traffic
    Yu, Xiaoyong
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2024, 582
  • [27] KRRNet: Keypoint Relational Regression Network for Bottom-Up Anchor-Free Object Detection
    Wang, Yinyuan
    Du, Haowen
    Cheng, Zhuo
    Gao, Changxin
    Wei, Longsheng
    Fang, Bin
    Xiao, Fei
    Luo, Dapeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2249 - 2260
  • [28] Object Detection in Remote Sensing Scenes Using Anchor-free Methods and Multi-vector Loss Functions
    Wu, Shuanghong
    Wang, Qiaodi
    Wang, Hongzhe
    Guo, Haonan
    Guo, Yanning
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6347 - 6352
  • [29] Anchor-free lightweight infrared object detection method (Invited)
    Gao F.
    Yang X.
    Lu R.
    Wang S.
    Gao J.
    Xia H.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (04):
  • [30] Center and Scale Prediction: Anchor-free Approach for Pedestrian and Face Detection
    Liu, Wei
    Hasan, Irtiza
    Liao, Shengcai
    PATTERN RECOGNITION, 2023, 135