New delay-dependent stability conditions for linear systems with delay

被引:32
作者
Elmadssia, S. [1 ]
Saadaoui, K. [1 ]
Benrejeb, M. [1 ]
机构
[1] Ecole Natl Ingenieurs Tunis, Lab LARA Automat, BP 37, Tunis 1002, Tunisia
来源
SYSTEMS SCIENCE & CONTROL ENGINEERING | 2013年 / 1卷 / 01期
关键词
linear time-delay systems; stability analysis; delay-dependent stability; arrow matrix;
D O I
10.1080/21642583.2013.775537
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, delay-dependent stability conditions for systems described by delayed differential equations are presented. The employment of a special transformation to a state space representation named Benrejeb characteristic arrow matrix permits to determine new asymptotic stability conditions. Illustrative examples are presented to show the effectiveness of the proposed approach.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 28 条
[1]  
Abdelkrim M. N., 2003, SAMS, V43, P977
[2]  
Balachandran B., 2009, DELAY DIFFERENTIAL E
[3]  
Bellman RKL, 1963, DIFFERENTIAL DIFFERE, DOI 10.1063/1.3050672
[4]  
Benrejeb M., 1978, P MEAS CONTR INT S M, P678
[5]   Choice of conjunctive operator of TSK fuzzy systems and stability domain study [J].
Benrejeb, Mohamed ;
Sakly, Anis ;
Ben Othman, Kamel ;
Borne, Pierre .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 76 (5-6) :410-421
[6]  
Borne P., 2007, AUTOMATISATION PROCE
[7]   ON STABILITY INDEPENDENT OF DELAY FOR LINEAR-SYSTEMS [J].
BRIERLEY, SD ;
CHIASSON, JN ;
LEE, EB ;
ZAK, SH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) :252-254
[8]   Consensus analysis with large and multiple communication delays using spectral delay space concept [J].
Cepeda-Gomez, Rudy ;
Olgac, Nejat .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (12) :1996-2007
[9]   ON COMPUTING THE MAXIMAL DELAY INTERVALS FOR STABILITY OF LINEAR DELAY SYSTEMS [J].
CHEN, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (06) :1087-1093
[10]   FREQUENCY SWEEPING TESTS FOR STABILITY INDEPENDENT OF DELAY [J].
CHEN, J ;
LATCHMAN, HA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (09) :1640-1645