Locally Conformal Almost Cosymplectic Manifold of Phi-holomorphic Sectional Conharmonic Curvature Tensor

被引:5
作者
Abood, Habeeb M. [1 ]
Al-Hussaini, Farah Hassan J. [1 ]
机构
[1] Univ Basrah, Dept Math, Coll Educ Pure Sci, Basrah, Iraq
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2018年 / 11卷 / 03期
关键词
Locally conformal almost cosymplectic manifold; conharmonic curvature tensor; Phi-holomorphic sectional conharmonic curvature tensor; Einstein manifold;
D O I
10.29020/nybg.ejpam.v11i3.3261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to study the geometry of locally conformal almost cosymplectic manifold of Phi-holomorphic sectional conharmonic curvature tensor. In particular, the necessary and sufficient conditions that locally conformal almost cosymplectic manifold is a manifold of point constant Phi-holomorphic sectional conharmonic curvature tensor have been found. The relation between the mentioned manifold and the Einstein manifold is determined.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 19 条
[1]  
Blair D. E., 1967, J DIFFERENTIAL GEOME, V1, P331
[2]  
Blair DE, 2002, PROGR MATH, P203
[3]  
Cartan E., 2002, RIEMANNIAN GEOMETRY
[4]   INTEGRABILITY OF ALMOST COSYMPLECTIC STRUCTURES [J].
GOLDBERG, SI ;
YANO, K .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) :373-&
[5]  
ISHII Y., 1957, TENSOR, V7, P73
[6]  
[Харитонова Светлана Владимировна Kharitonova Svetlana Vladimirovna], 2009, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V86, P126, DOI 10.4213/mzm5249
[7]  
Kim B.H., 1988, HIROSHIMA MATH J, V18
[8]  
Kim B.H., 1989, HIROSHIMA MATH J, V19
[9]  
Kirichenko V. F., 2013, DIFFERENTIAL GEOMETR, VSecond
[10]  
Kirichenko V.F., 2012, MAT ZAMETKI, V91, P40