Dataset of potential targets for Mycobacterium tuberculosis H37Rv through comparative genome analysis

被引:23
作者
Asif, Siddiqui M. [1 ]
Asad, Amir [1 ]
Faizan, Ahmad [2 ]
Anjali, Malik S. [1 ]
Arvind, Arya [1 ]
Neelesh, Kapoor [1 ]
Hirdesh, Kumar [1 ]
Sanjay, Kumar [2 ]
机构
[1] Meerut Inst Engn & Technol, Dept Biotechnol, Meerut, Uttar Pradesh, India
[2] Shobhit Univ, Dept Biotechnol, Meerut, Uttar Pradesh, India
关键词
Mycobacterium tuberculosis H37Rv; DEG; BLASTX; targets;
D O I
10.6026/97320630004245
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.
引用
收藏
页码:245 / 248
页数:4
相关论文
共 17 条
[1]   Vaccine strategies against latent tuberculosis infection [J].
Andersen, Peter .
TRENDS IN MICROBIOLOGY, 2007, 15 (01) :7-13
[2]  
Baulard AR, 2000, J BIOL CHEM, V275, P28326
[3]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[4]  
Cole Stewart T., 1994, Trends in Microbiology, V2, P411, DOI 10.1016/0966-842X(94)90621-1
[5]  
Freiberg C, 2001, DRUG DISCOV TODAY, V6, pS72
[6]   MISSENSE MUTATIONS IN THE CATALASE-PEROXIDASE GENE, KATG, ARE ASSOCIATED WITH ISONIAZID RESISTANCE IN MYCOBACTERIUM-TUBERCULOSIS [J].
HEYM, B ;
ALZARI, PM ;
HONORE, N ;
COLE, ST .
MOLECULAR MICROBIOLOGY, 1995, 15 (02) :235-245
[7]   STREPTOMYCIN RESISTANCE IN MYCOBACTERIA [J].
HONORE, N ;
COLE, ST .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1994, 38 (02) :238-242
[8]   Essay - Envisioning future strategies for vaccination against tuberculosis [J].
Kaufmann, Stefan H. E. .
NATURE REVIEWS IMMUNOLOGY, 2006, 6 (09) :699-704
[9]   Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M-bovis BCG and M-tuberculosis [J].
Larsen, MH ;
Vilchèze, C ;
Kremer, L ;
Besra, GS ;
Parsons, L ;
Salfinger, M ;
Heifets, L ;
Hazbon, MH ;
Alland, D ;
Sacchettini, JC ;
Jacobs, WR .
MOLECULAR MICROBIOLOGY, 2002, 46 (02) :453-466
[10]   Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid [J].
Mdluli, K ;
Slayden, RA ;
Zhu, YQ ;
Ramaswamy, S ;
Pan, X ;
Mead, D ;
Crane, DD ;
Musser, JM ;
Barry, CE .
SCIENCE, 1998, 280 (5369) :1607-1610