Evolution and monotonicity of the first eigenvalue of p-Laplacian under the Ricci-harmonic flow

被引:21
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Sussex, Brighton BN1 9QH, E Sussex, England
关键词
Ricci-harmonic flow; eigenvalue; p-Laplacian; monotonicity;
D O I
10.1515/jaa-2015-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the evolution and monotonicity of the eigenvalues of p-Laplace operator on an m-dimensional compact Riemannian manifold M whose metric g(t) evolves by the Ricci-harmonic flow. The first nonzero eigenvalue is proved to be monotonically nondecreasing along the flow and differentiable almost everywhere. As a corollary, we recover the corresponding results for the usual Laplace-Beltrami operator when p = 2. We also examine the evolution and monotonicity under volume preserving flow and it turns out that the first eigenvalue is not monotone in general.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 2004, RICCI FLOW INTRO
[2]   First eigenvalues of geometric operators under the Ricci flow [J].
Cao, Xiaodong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4075-4078
[3]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5
[4]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[5]   ENTROPY AND LOWEST EIGENVALUE ON EVOLVING MANIFOLDS [J].
Guo, Hongxin ;
Philipowski, Robert ;
Thalmaier, Anton .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) :61-81
[6]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[7]  
Kato T., 1984, GRUNDLEHREN MATH WIS, V132
[8]   Notes on Perelman's papers [J].
Kleiner, Bruce ;
Lott, John .
GEOMETRY & TOPOLOGY, 2008, 12 :2587-2855
[9]  
Li J., 2007, PREPRINT
[10]   Eigenvalues and energy functionals with monotonicity formulae under Ricci flow [J].
Li, Jun-Fang .
MATHEMATISCHE ANNALEN, 2007, 338 (04) :927-946