CERTAIN DIRICHLET SERIES ASSOCIATED WITH HILBERT MODULAR FORMS AND RANKINS METHOD

被引:50
作者
ASAI, T [1 ]
机构
[1] EHIME UNIV,FAC GEN EDUC,DEPT MATH,MATSUYAMA 790,JAPAN
关键词
D O I
10.1007/BF01391220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:81 / 94
页数:14
相关论文
共 8 条
[1]   FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS AT VARIOUS CUSPS AND SOME APPLICATIONS TO RANKINS CONVOLUTION [J].
ASAI, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1976, 28 (01) :48-61
[2]   CERTAIN FUNCTION ANALOGOUS TO LOG/ETA(Z) [J].
ASAI, T .
NAGOYA MATHEMATICAL JOURNAL, 1970, 40 (DEC) :193-&
[3]  
DOI K, 1969, INVENT MATH, V9, P1, DOI 10.1007/BF01389886
[4]   COINCIDENCE OF 2 DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS OF HECKES NEBEN-TYPE AND HILBERT MODULAR FORMS OVER A REAL QUADRATIC FIELD [J].
NAGANUMA, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) :547-555
[5]   ON A CONVOLUTION OF L-SERIES [J].
OGG, AP .
INVENTIONES MATHEMATICAE, 1969, 7 (04) :297-&
[6]  
Rankin RA, 1939, P CAMB PHILOS SOC, V35, P351
[7]   MODULAR FORMS ASSOCIATED TO REAL QUADRATIC FIELDS [J].
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1975, 30 (01) :1-46
[8]  
[No title captured]