A Pseudo-Parabolic Type Equation with Weakly Nonlinear Sources

被引:0
作者
Li Yinghua [1 ]
Cao Yang [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2013年 / 26卷 / 04期
关键词
Pseudo-parabolic equation; existence; asymptotic behavior;
D O I
10.4208/jpde.v26.n4.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of nonnegative solutions to the initial boundary value problems for the pseudo-parabolic type equation with weakly nonlinear sources. Further, we discuss the asymptotic behavior of the solutions as the viscous coefficient k tends to zero.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 18 条
[1]  
ATAMANOV ER, 1979, STUDIES INTEGRO DIFF, V261, P218
[2]  
Barenblatt GI., 1960, J APPL MATH MECH, V24, P1286, DOI [DOI 10.1016/0021-8928(60)90107-6, 10.1016/0021-8928(60)90107-6]
[3]   Infiltration in porous media with dynamic capillary pressure: travelling waves [J].
Cuesta, C ;
van Duijn, CJ ;
Hulshof, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :381-397
[4]   Unique solvability of the cauchy problem for certain quasilinear pseudoparabolic equations [J].
Gladkov, AL .
MATHEMATICAL NOTES, 1996, 60 (3-4) :264-268
[5]  
Henry D., 1993, LECT NOTES MATH, V840
[6]   The Cauchy problem for an equation of Sobolev type with power non-linearity [J].
Kaikina, EI ;
Naumkin, PI ;
Shishmarev, IA .
IZVESTIYA MATHEMATICS, 2005, 69 (01) :59-111
[7]  
Kaikina EI., 2007, ELECT J DIFFERENTIAL, V109, P1
[8]  
Ladyzenskaja O.A., 1968, TRANSLATIONS MATH MO, V23
[9]  
Li Yinghua, 2011, Communications in Mathematical Research, V27, P37
[10]  
Li YK, 2011, ADV DIFFER EQU-NY, P1, DOI [10.1186/1687-1847-2011-42, 10.1109/ICEMS.2011.6073991]