ON THE SENDOV CONJECTURE FOR 6TH DEGREE POLYNOMIALS

被引:6
作者
BROWN, JE
机构
关键词
D O I
10.2307/2048768
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Sendov conjecture asserts that if p(z) = PI(k = 1)n(z - z(k)) is a polynomial with zeros \z(k)\ less-than-or-equal-to 1, then each disk \z - z(k)\ less-than-or-equal-to 1, (1 less-than-or-equal-to k less-than-or-equal-to n) contains a zero of p'(z). This conjecture has been verified in general only for polynomials of degree n = 2, 3, 4, 5. If p(z) is an extremal polynomial for this conjecture when n = 6, it is known that if a zero \z(j)\ less-than-or-equal-to lambda-6 = 0.626997... then \z - z(j)\ less-than-or-equal-to 1 contains a zero of p'(z). (The conjecture for n = 6 would be proved if lambda-6 = 1.) It is shown that lambda-6 can be improved to lambda-6 = 63/64 = 0.984375.
引用
收藏
页码:939 / 946
页数:8
相关论文
共 15 条
[1]   ON THE ZEROS OF A POLYNOMIAL AND ITS DERIVATIVE [J].
AZIZ, A .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1985, 31 (02) :245-255
[2]   ON A CONJECTURE OF SENDOV ABOUT THE CRITICAL-POINTS OF A POLYNOMIAL [J].
BOJANOV, BD ;
RAHMAN, QI ;
SZYNAL, J .
MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (02) :281-285
[3]  
BRANNAN DA, 1968, PROC CAMB PHILOS S-M, V64, P83
[4]   ON THE ILIEFF-SENDOV CONJECTURE [J].
BROWN, JE .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 135 (02) :223-232
[5]  
GOODMAN AW, 1969, P AM MATH SOC, V21, P273
[6]  
Hayman W. K., 1967, RES PROBLEMS FUNCTIO
[7]   CONJECTURES ON THE CRITICAL-POINTS OF A POLYNOMIAL [J].
MARDEN, M .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (04) :267-276
[8]  
MARDEN M, 1966, AM MATH SOC SURVEYS, V3
[9]   ON ILYEFFS CONJECTURE [J].
MEIR, A ;
SHARMA, A .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) :459-&
[10]  
Phelps D., 1972, KODAI MATH SEM REP, V24, P172