ON THE ANALYTICAL SOLUTION OF THE ORNSTEIN-ZERNIKE EQUATION WITH YUKAWA CLOSURE

被引:49
作者
BLUM, L
VERICAT, F
HERRERAPACHECO, JN
机构
[1] UNIV LA PLATA,FAC INGN,DEPT FISICOMATEMAT,INST FIS LIQUIDOS & SISTEMAS BIOL,LA PLATA,ARGENTINA
[2] UNIV AUTONOMA PUEBLA,ESCUELA CIENCIAS FISICOMATEMAT,PUEBLA 72001,MEXICO
关键词
LIQUIDS; DENSE FLUIDS; ANALYTICAL MODELS; YUKAWA POTENTIALS;
D O I
10.1007/BF01060067
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the solution of the Ornstein-Zernike equation for most general closure consisting of a sum of M Yukawa-type exponentials. A formal solution for the factored case is bound for an arbitrary mixture of hard spheres introducing a general scaling matrix-GAMMA of dimensions M x M. A sufficient number of equations for this matrix is obtained from symmetry considerations and the boundary condition. We discuss also restricted and semirestricted case, for which explicit solutions in terms of the scaling parameters and input parameters are found.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 37 条
[31]   ANALYTICAL SOLUTION OF THE MEAN-SPHERICAL APPROXIMATION FOR A SYSTEM OF HARD-SPHERES WITH A SURFACE-ADHESION [J].
TERAN, LMY ;
CORVERA, E ;
GONZALEZ, AE .
PHYSICAL REVIEW A, 1989, 39 (01) :371-373
[32]  
TURQ P, UNPUB
[33]   ORNSTEIN-ZERNIKE EQUATION FOR A 2-YUKAWA C(R) [J].
WAISMAN, E ;
HOYE, JS ;
STELL, G .
CHEMICAL PHYSICS LETTERS, 1976, 40 (03) :514-516
[34]   RADIAL-DISTRIBUTION FUNCTION FOR A FLUID OF HARD SPHERES AT HIGH-DENSITIES - MEAN SPHERICAL INTEGRAL-EQUATION APPROACH [J].
WAISMAN, E .
MOLECULAR PHYSICS, 1973, 25 (01) :45-48
[35]   EXACT SOLUTION OF AN INTEGRAL EQUATION FOR STRUCTURE OF A PRIMITIVE MODEL OF ELECTROLYTES [J].
WAISMAN, E ;
LEBOWITZ, JL .
JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (08) :4307-&
[37]   ANALYTIC SOLUTION OF PERCUS-YEVICK EQUATION [J].
WERTHEIM, MS .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (05) :643-&