WILL THE PLS CRITERION FOR ORDER ESTIMATION WORK WITH AML AND A-POSTERIORI PREDICTION ERROR

被引:0
|
作者
HEMERLY, EM
FRAGOSO, MD
机构
[1] CTR TECH AEROSP,INST TECHNOL AERONAUT,IEEE,BR-12225 SAO JOSE CAMPOS,SP,BRAZIL
[2] CONSELHO NACL PESQUISAS,DEPT PESQUISA & DESENVOLVIMENTO,NACL COMP CIENT LAB,BR-22290 RIO DE JANEIRO,RJ,BRAZIL
关键词
ARMA models; model order estimation; predictive least squares;
D O I
10.1016/0167-6911(90)90085-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The general formula of the PLS (Predictive Least Squares) criterion for order estimation is worked out under the assumption that the parameter estimates are calculated via the AML (Approximate Maximum Likelihood). A particular case is then carefully analysed and it is shown that depending on the system generating the data the PLS critetion using the a posteriori prediction error can, surprisingly, almost surely overestimate the true order. © 1990.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [1] Will the PLS criterion for order estimation work with AML and a posteriori prediction error
    Hemerly, Elder M.
    Fragoso, Marcelo D.
    Systems and Control Letters, 1990, 14 (01): : 79 - 92
  • [2] A-posteriori error estimation for second order mechanical systems
    Ruiner, Thomas
    Fehr, Joerg
    Haasdonk, Bernard
    Eberhard, Peter
    ACTA MECHANICA SINICA, 2012, 28 (03) : 854 - 862
  • [3] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jörg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 : 854 - 862
  • [4] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jrg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 (03) : 854 - 862
  • [5] A-POSTERIORI ERROR ESTIMATION IN SENSITIVITY ANALYSIS
    BUSCAGLIA, GC
    FEIJOO, RA
    PADRA, C
    STRUCTURAL OPTIMIZATION, 1995, 9 (3-4): : 194 - 199
  • [6] A-posteriori error estimation in axisymmetric geotechnical analyses
    El-Hamalawi, A
    Bolton, MD
    COMPUTERS AND GEOTECHNICS, 2002, 29 (08) : 587 - 607
  • [7] Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements
    Guillermo Hauke
    Mohamed H. Doweidar
    Daniel Fuster
    Antonio Gómez
    Javier Sayas
    Computational Mechanics, 2006, 38 : 382 - 389
  • [8] Application of variational a-posteriori multiscale error estimation to higher-order elements
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    Gomez, Antonio
    Sayas, Javier
    COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 382 - 389
  • [9] Proper intrinsic scales for a-posteriori multiscale error estimation
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Miana, Mario
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 3983 - 4001
  • [10] A simple a-posteriori error estimation for adaptive BEM in elasticity
    Chen, HB
    Yu, DH
    Schnack, E
    COMPUTATIONAL MECHANICS, 2003, 30 (5-6) : 343 - 354